Holistic Mapping of Striatum Surfaces in the Laplace-Beltrami Embedding Space

  • Jin Kyu GahmEmail author
  • Yonggang Shi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10433)


In brain shape analysis, the striatum is typically divided into three parts: the caudate, putamen, and accumbens nuclei for its analysis. Recent connectivity and animal studies, however, indicate striatum-cortical inter-connections do not always follow such subdivisions. For the holistic mapping of striatum surfaces, conventional spherical registration techniques are not suitable due to the large metric distortions in spherical parameterization of striatal surfaces. To overcome this difficulty, we develop a novel striatal surface mapping method using our recently proposed Riemannian metric optimization techniques in the Laplace-Beltrami (LB) embedding space. For the robust resolution of sign ambiguities in the LB spectrum, we also devise novel anatomical contextual features to guide the surface mapping in the embedding space. In our experimental results, we compare with spherical registration tools from FreeSurfer and FSL to demonstrate that our novel method provides a superior solution to the striatal mapping problem. We also apply our method to map the striatal surfaces from 211 subjects of the Human Connectome Project (HCP), and use the surface maps to construct a cortical connectivity atlas. Our atlas results show that the striato-cortical connectivity is not distinctive according to traditional structural subdivision of the striatum, and further confirms the holistic approach for mapping striatal surfaces.


  1. 1.
    Shepherd, G.: Corticostriatal connectivity and its role in disease. Nat. Rev. Neurosci. 14, 278–291 (2013)CrossRefGoogle Scholar
  2. 2.
    Muralidharan, P., Fishbaugh, J., Johnson, H.J., Durrleman, S., Paulsen, J.S., Gerig, G., Fletcher, P.T.: Diffeomorphic shape trajectories for improved longitudinal segmentation and statistics. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8675, pp. 49–56. Springer, Cham (2014). doi: 10.1007/978-3-319-10443-0_7CrossRefGoogle Scholar
  3. 3.
    Mamah, D., Alpert, K.I., Barch, D.M., Csernansky, J.G., Wang, L.: Subcortical neuromorphometry in schizophrenia spectrum and bipolar disorders. NeuroImage Clin. 11, 276–286 (2016)CrossRefGoogle Scholar
  4. 4.
    Tziortzi, A.C., Haber, S.N., Searle, G.E., Tsoumpas, C., Long, C.J., Shotbolt, P., Douaud, G., Jbabdi, S., Behrens, T.E., Rabiner, E.A., et al.: Connectivity-based functional analysis of dopamine release in the striatum using diffusion-weighted MRI and positron emission tomography. Cereb. Cortex (2013). doi: 10.1093/cercor/bhs397CrossRefGoogle Scholar
  5. 5.
    Jaspers, E., Balsters, J.H., Kassraian Fard, P., Mantini, D., Wenderoth, N.: Corticostriatal connectivity fingerprints: probability maps based on resting-state functional connectivity. Hum. Brain Mapp. 38, 1478–1491 (2016)CrossRefGoogle Scholar
  6. 6.
    Burguière, E., Monteiro, P., Feng, G., Graybiel, A.M.: Optogenetic stimulation of lateral orbitofronto-striatal pathway suppresses compulsive behaviors. Science 340(6137), 1243–1246 (2013)CrossRefGoogle Scholar
  7. 7.
    Gahm, J.K., Shi, Y.: Riemannian metric optimization for connectivity-driven surface mapping. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9900, pp. 228–236. Springer, Cham (2016). doi: 10.1007/978-3-319-46720-7_27CrossRefGoogle Scholar
  8. 8.
    Fischl, B., Sereno, M.I., Dale, A.M.: Cortical surface-based analysis II: Inflation, flattening, and a surface-based coordinate system. NeuroImage 9(2), 195–207 (1999)CrossRefGoogle Scholar
  9. 9.
    Yeo, B., Sabuncu, M., Vercauteren, T., Ayache, N., Fischl, B., Golland, P.: Spherical demons: fast diffeomorphic landmark-free surface registration. IEEE Trans. Med. Imaging 29(3), 650–668 (2010)CrossRefGoogle Scholar
  10. 10.
    Robinson, E.C., Jbabdi, S., Glasser, M.F., Andersson, J., Burgess, G.C., Harms, M.P., Smith, S.M., Van Essen, D.C., Jenkinson, M.: MSM: a new flexible framework for multimodal surface matching. Neuroimage 100, 414–426 (2014)CrossRefGoogle Scholar
  11. 11.
    Rustamov, R.M.: Laplace-Beltrami eigenfunctions for deformation invariant shape representation. In: Proceedings of the Eurographics Symposium on Geometry Processing, pp. 225–233 (2007)Google Scholar
  12. 12.
    Lombaert, H., Sporring, J., Siddiqi, K.: Diffeomorphic spectral matching of cortical surfaces. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds.) IPMI 2013. LNCS, vol. 7917, pp. 376–389. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-38868-2_32CrossRefGoogle Scholar
  13. 13.
    Shi, Y., Lai, R., Wang, D.J., Pelletier, D., Mohr, D., Sicotte, N., Toga, A.W.: Metric optimization for surface analysis in the Laplace-Beltrami embedding space. IEEE Trans. Med. Imaging 33(7), 1447–1463 (2014)CrossRefGoogle Scholar
  14. 14.
    Essen, D.C.V., Smith, S.M., Barch, D.M., Behrens, T.E., Yacoub, E., Ugurbil, K.: The Wu-Minn human connectome project: an overview. NeuroImage 80, 62–79 (2013)CrossRefGoogle Scholar
  15. 15.
    Shi, Y., Lai, R., Morra, J., Dinov, I., Thompson, P., Toga, A.: Robust surface reconstruction via Laplace-Beltrami eigen-projection and boundary deformation. IEEE Trans. Med. Imaging 29(12), 2009–2022 (2010)CrossRefGoogle Scholar
  16. 16.
    Shen, L., Makedon, F.: Spherical mapping for processing of 3D closed surfaces. Image Vis. Comput. 24(7), 743–761 (2006)CrossRefGoogle Scholar
  17. 17.
    Tran, G., Shi, Y.: Fiber orientation and compartment parameter estimation from multi-shell diffusion imaging. IEEE Trans. Med. Imaging 34(11), 2320–2332 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations