Learning and Incorporating Shape Models for Semantic Segmentation

  • H. Ravishankar
  • R. VenkataramaniEmail author
  • S. Thiruvenkadam
  • P. Sudhakar
  • V. Vaidya
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10433)


Semantic segmentation has been popularly addressed using Fully convolutional networks (FCN) (e.g. U-Net) with impressive results and has been the forerunner in recent segmentation challenges. However, FCN approaches do not necessarily incorporate local geometry such as smoothness and shape, whereas traditional image analysis techniques have benefitted greatly by them in solving segmentation and tracking problems. In this work, we address the problem of incorporating shape priors within the FCN segmentation framework. We demonstrate the utility of such a shape prior in robust handling of scenarios such as loss of contrast and artifacts. Our experiments show \(\approx 5\%\) improvement over U-Net for the challenging problem of ultrasound kidney segmentation.


  1. 1.
    BenTaieb, A., Hamarneh, G.: Topology aware fully convolutional networks for histology gland segmentation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 460–468. Springer, Cham (2016). doi: 10.1007/978-3-319-46723-8_53CrossRefGoogle Scholar
  2. 2.
    Chaudhury, S., Roy, H.: Can fully convolutional networks perform well for general image restoration problems? CoRR abs/1611.04481 (2016)Google Scholar
  3. 3.
    Chen, F., Yu, H., Hu, R., Zeng, X.: Deep learning shape priors for object segmentation. In: Proceedings of CVPR, pp. 1870–1877, June 2013Google Scholar
  4. 4.
    Cremers, D., Rousson, M., Deriche, R.: A review of statistical approaches to level set segmentation: integrating color, texture, motion and shape. IJCV 72(2), 195–215 (2007)CrossRefGoogle Scholar
  5. 5.
    Eslami, S.M., Heess, N., Williams, C.K., Winn, J.: The shape boltzmann machine: a strong model of object shape. Int. J. Comput. Vis. 107(2), 155–176 (2014)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Etyngier, P., Segonne, F., Keriven, R.: Shape priors using manifold learning techniques. In: Proceedings of ICCV, pp. 1–8 (2007)Google Scholar
  7. 7.
    Fischer, P., Dosovitskiy, A., Ilg, E., Häusser, P., Hazırbaş, C., Golkov, V., van der Smagt, P., Cremers, D., Brox, T.: Flownet: learning optical flow with convolutional networks. arXiv preprint (2015). arXiv:1504.06852
  8. 8.
    Gondara, L.: Medical image denoising using convolutional denoising autoencoders. arXiv preprint (2016). arXiv:1608.04667
  9. 9.
    Ravishankar, H., Thiruvenkadam, S., Venkataramani, R., Vaidya, V.: Joint deep learning of foreground, background and shape for robust contextual segmentation. In: Niethammer, M., Styner, M., Aylward, S., Zhu, H., Oguz, I., Yap, P.-T., Shen, D. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 622–632. Springer, Cham (2017). doi: 10.1007/978-3-319-59050-9_49CrossRefGoogle Scholar
  10. 10.
    Holden, D., Saito, J., Komura, T., Joyce, T.: Learning motion manifolds with convolutional autoencoders. In: SIGGRAPH Asia Tech. Briefs, p. 18. ACM (2015)Google Scholar
  11. 11.
    Kalogerakis, E., Averkiou, M., Maji, S., Chaudhuri, S.: 3D shape segmentation with projective convolutional networks. CoRR abs/1612.02808 (2016)Google Scholar
  12. 12.
    Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of CVPR, pp. 3431–3440 (2015)Google Scholar
  13. 13.
    Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). doi: 10.1007/978-3-319-24574-4_28CrossRefGoogle Scholar
  14. 14.
    Safar, S., Yang, M.H.: Learning shape priors for object segmentation via neural networks. In: Proceedings of ICIP, pp. 1835–1839 (2015)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • H. Ravishankar
    • 1
  • R. Venkataramani
    • 1
    Email author
  • S. Thiruvenkadam
    • 1
  • P. Sudhakar
    • 1
  • V. Vaidya
    • 1
  1. 1.GE Global ResearchBangaloreIndia

Personalised recommendations