Advertisement

Segmentation of Intracranial Arterial Calcification with Deeply Supervised Residual Dropout Networks

  • Gerda BortsovaEmail author
  • Gijs van Tulder
  • Florian Dubost
  • Tingying Peng
  • Nassir Navab
  • Aad van der Lugt
  • Daniel Bos
  • Marleen De Bruijne
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10435)

Abstract

Intracranial carotid artery calcification (ICAC) is a major risk factor for stroke, and might contribute to dementia and cognitive decline. Reliance on time-consuming manual annotation of ICAC hampers much demanded further research into the relationship between ICAC and neurological diseases. Automation of ICAC segmentation is therefore highly desirable, but difficult due to the proximity of the lesions to bony structures with a similar attenuation coefficient. In this paper, we propose a method for automatic segmentation of ICAC; the first to our knowledge. Our method is based on a 3D fully convolutional neural network that we extend with two regularization techniques. Firstly, we use deep supervision to encourage discriminative features in the hidden layers. Secondly, we augment the network with skip connections, as in the recently developed ResNet, and dropout layers, inserted in a way that skip connections circumvent them. We investigate the effect of skip connections and dropout. In addition, we propose a simple problem-specific modification of the network objective function that restricts the focus to the most important image regions and simplifies the optimization. We train and validate our model using 882 CT scans and test on 1,000. Our regularization techniques and objective improve the average Dice score by 7.1%, yielding an average Dice of 76.2% and 97.7% correlation between predicted ICAC volumes and manual annotations.

Keywords

Intracranial calcifications Calcium scoring Deep learning Deep supervision Residual networks Dropout 

References

  1. 1.
    Bos, D.: Atherosclerotic calcification: determinants and clinical neurological consequences. Ph.D. thesis, E, December 2013. http://hdl.handle.net/1765/50178
  2. 2.
    Ciresan, D., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Deep neural networks segment neuronal membranes in electron microscopy images. In: NIPS (2012)Google Scholar
  3. 3.
    van Engelen, A., Niessen, W.J., Klein, S., Groen, H.C., Verhagen, H.J., Wentzel, J.J., van der Lugt, A., de Bruijne, M.: Atherosclerotic plaque component segmentation in combined carotid MRI and CTA data incorporating class label uncertainty. PloS one 9(4), e94840 (2014)CrossRefGoogle Scholar
  4. 4.
    He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)Google Scholar
  5. 5.
    He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016). doi: 10.1007/978-3-319-46493-0_38 CrossRefGoogle Scholar
  6. 6.
    Huang, G., Sun, Y., Liu, Z., Sedra, D., Weinberger, K.Q.: Deep networks with stochastic depth. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 646–661. Springer, Cham (2016). doi: 10.1007/978-3-319-46493-0_39 CrossRefGoogle Scholar
  7. 7.
    Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint (2015). arXiv:1502.03167
  8. 8.
    LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)CrossRefGoogle Scholar
  9. 9.
    Lee, C.Y., Xie, S., Gallagher, P.W., Zhang, Z., Tu, Z.: Deeply-supervised nets. In: AISTATS, vol. 2, no. 5 (2015)Google Scholar
  10. 10.
    Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR, pp. 3431–3440 (2015)Google Scholar
  11. 11.
    Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). doi: 10.1007/978-3-319-24574-4_28 CrossRefGoogle Scholar
  12. 12.
    Shahzad, R., Schaap, M., Goncalves, F.B., Metz, C., Tang, H., van Walsum, T., Moelker, A., van Vliet, L.J., Niessen, W.J.: Automatic detection of calcified lesions in the descending aorta using contrast enhanced CT scans. In: ISBI (2012)Google Scholar
  13. 13.
    Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Tompson, J., Goroshin, R., Jain, A., LeCun, Y., Bregler, C.: Efficient object localization using convolutional networks. In: CVPR, pp. 648–656 (2015)Google Scholar
  15. 15.
    Wolterink, J.M., Leiner, T., De Vos, B.D., Coatrieux, J.L., Kelm, B.M., Kondo, S., Salgado, R.A., Shahzad, R., Shu, H., Snoeren, M., et al.: An evaluation of automatic coronary artery calcium scoring methods with cardiac CT using the orcascore framework. Med. phys. 43(5), 2361–2373 (2016)CrossRefGoogle Scholar
  16. 16.
    Wolterink, J.M., Leiner, T., de Vos, B.D., van Hamersvelt, R.W., Viergever, M.A., Išgum, I.: Automatic coronary artery calcium scoring in cardiac CT angiography using paired convolutional neural networks. Med. Image Anal. 34, 123–136 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Gerda Bortsova
    • 1
    Email author
  • Gijs van Tulder
    • 1
  • Florian Dubost
    • 1
  • Tingying Peng
    • 2
  • Nassir Navab
    • 2
    • 3
  • Aad van der Lugt
    • 4
  • Daniel Bos
    • 4
    • 5
    • 6
  • Marleen De Bruijne
    • 1
    • 7
  1. 1.Biomedical Imaging Group RotterdamErasmus MCRotterdamThe Netherlands
  2. 2.Computer Aided Medical ProceduresTechnische Universität MünchenMunichGermany
  3. 3.Computer Aided Medical ProceduresJohns Hopkins UniversityBaltimoreUSA
  4. 4.Department of Radiology and Nuclear MedicineErasmus MCRotterdamThe Netherlands
  5. 5.Department of EpidemiologyErasmus MCRotterdamThe Netherlands
  6. 6.Department of Clinical EpidemiologyHarvard School of Public HealthBostonUSA
  7. 7.Department of Computer ScienceUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations