Advertisement

Kernel Generalized-Gaussian Mixture Model for Robust Abnormality Detection

  • Nitin Kumar
  • Ajit V. Rajwade
  • Sharat Chandran
  • Suyash P. AwateEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10435)

Abstract

Typical methods for abnormality detection in medical images rely on principal component analysis (PCA), kernel PCA (KPCA), or their robust invariants. However, typical robust-KPCA methods use heuristics for model fitting and perform outlier detection ignoring the variances of the data within principal subspaces. In this paper, we propose a novel method for robust statistical learning by extending the multivariate generalized-Gaussian distribution to a reproducing kernel Hilbert space and employing it within a mixture model. We propose expectation maximization to fit our kernel generalized-Gaussian mixture model (KGGMM), using solely the Gram matrix and without the explicit lifting map. We exploit the KGGMM, including component means, principal directions, and variances, for abnormality detection in images. The results on 4 large publicly available datasets, involving retinopathy and cancer, show that our method outperforms the state of the art.

Keywords

Abnormality detection One-class classification Kernel methods Robustness Generalized gaussian Mixture model Expectation maximization 

References

  1. 1.
    Barla, A., Odone, F., Verri, A.: Histogram intersection kernel for image classification. In: IEEE International Conference on Image Processing, vol. 3, pp. 513–516 (2003)Google Scholar
  2. 2.
    Debruyne, M., Verdonck, T.: Robust kernel principal component analysis and classification. Adv. Data Anal. Classif. 4(2), 15167 (2010)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Fritsch, V., Varoquaux, G., Thyreau, B., Poline, J.B., Thirion, B.: Detecting outliers in high-dimensional neuroimaging datasets with robust covariance estimators. Med. Imag. Anal. 16(7), 1359–1370 (2012)CrossRefGoogle Scholar
  4. 4.
    Hoffmann, H.: Kernel PCA for novelty detection. Pattern Recog. 40(3), 863 (2007)CrossRefzbMATHGoogle Scholar
  5. 5.
    Huang, H., Yeh, Y.: An iterative algorithm for robust kernel principal component analysis. Neurocomputing 74(18), 3921–3930 (2011)CrossRefGoogle Scholar
  6. 6.
    Kwak, N.: Principal component analysis by Lp-norm maximization. IEEE Trans. Cybern. 44(5), 594–609 (2014)CrossRefGoogle Scholar
  7. 7.
    Li, Y.: On incremental and robust subspace learning. Pattern Recog. 37(7), 1509–1518 (2004)CrossRefzbMATHGoogle Scholar
  8. 8.
    Lu, C., Zhang, T., Zhang, R., Zhang, C.: Adaptive robust kernel PCA algorithm. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 6, pp. 621–624 (2003)Google Scholar
  9. 9.
    Manning, S., Shamir, L.: CHLOE: a software tool for automatic novelty detection in microscopy image datasets. J. Open Res. Soft. 2(1), 1–10 (2014)CrossRefGoogle Scholar
  10. 10.
    Mourao-Miranda, J., Hardoon, D., Hahn, T., Williams, S., Shawe-Taylor, J., Brammer, M.: Patient classification as an outlier detection problem: an application of the one-class support vector machine. Neuroimage 58(3), 793–804 (2011)CrossRefGoogle Scholar
  11. 11.
    Norousi, R., Wickles, S., Leidig, C., Becker, T., Schmid, V., Beckmann, R., Tresch, A.: Automatic post-picking using MAPPOS improves particle image detection from cryo-EM micrographs. J. Struct. Biol. 182(2), 59–66 (2013)CrossRefGoogle Scholar
  12. 12.
    Novey, M., Adali, T., Roy, A.: A complex generalized Gaussian distribution-characterization, generation, and estimation. IEEE Trans. Sig. Proc. 58(3), 1427–1433 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Scholkopf, B., Platt, J., Shawe-Taylor, J., Smola, A., Williamson, R.: Estimating the support of a high-dimensional distribution. Neural Comp. 13(7), 1443 (2001)CrossRefzbMATHGoogle Scholar
  14. 14.
    Scholkopf, B., Smola, A., Muller, K.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Comp. 10(5), 1299–1319 (1998)CrossRefGoogle Scholar
  15. 15.
    Tax, D., Duin, R.: Support vector data description. Mach. Learn. 54(1), 45–66 (2004)CrossRefzbMATHGoogle Scholar
  16. 16.
    Varma, M., Zisserman, A.: A statistical approach to material classification using image patch exemplars. IEEE Trans. Pattern Anal. Mach. Intell. 31(11), 2032–2047 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Nitin Kumar
    • 1
  • Ajit V. Rajwade
    • 1
  • Sharat Chandran
    • 1
  • Suyash P. Awate
    • 1
    Email author
  1. 1.Computer Science and Engineering DepartmentIndian Institute of Technology (IIT) BombayMumbaiIndia

Personalised recommendations