Advertisement

Deep Supervision for Pancreatic Cyst Segmentation in Abdominal CT Scans

  • Yuyin Zhou
  • Lingxi XieEmail author
  • Elliot K. Fishman
  • Alan L. Yuille
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10435)

Abstract

Automatic segmentation of an organ and its cystic region is a prerequisite of computer-aided diagnosis. In this paper, we focus on pancreatic cyst segmentation in abdominal CT scan. This task is important and very useful in clinical practice yet challenging due to the low contrast in boundary, the variability in location, shape and the different stages of the pancreatic cancer. Inspired by the high relevance between the location of a pancreas and its cystic region, we introduce extra deep supervision into the segmentation network, so that cyst segmentation can be improved with the help of relatively easier pancreas segmentation. Under a reasonable transformation function, our approach can be factorized into two stages, and each stage can be efficiently optimized via gradient back-propagation throughout the deep networks. We collect a new dataset with 131 pathological samples, which, to the best of our knowledge, is the largest set for pancreatic cyst segmentation. Without human assistance, our approach reports a \(63.44\%\) average accuracy, measured by the Dice-Sørensen coefficient (DSC), which is higher than the number (\(60.46\%\)) without deep supervision.

Notes

Acknowledgements

This work was supported by the Lustgarten Foundation for Pancreatic Cancer Research. We thank Dr. Seyoun Park for enormous help.

References

  1. 1.
    Al-Ayyoub, M., Alawad, D., Al-Darabsah, K., Aljarrah, I.: Automatic detection and classification of brain hemorrhages. WSEAS Trans. Comput. 12(10), 395–405 (2013)Google Scholar
  2. 2.
    Christ, P., Ettlinger, F., Grün, F., Elshaera, M., Lipkova, J., Schlecht, S., Ahmaddy, F., Tatavarty, S., Bickel, M., Bilic, P., et al.: Automatic Liver and Tumor Segmentation of CT and MRI Volumes using Cascaded Fully Convolutional Neural Networks. arXiv preprint arXiv:1702.05970 (2017)
  3. 3.
    Dmitriev, K., Gutenko, I., Nadeem, S., Kaufman, A.: Pancreas and Cyst Segmentation. SPIE Medical, Imaging, p. 97842C (2016)Google Scholar
  4. 4.
    Gintowt, A., Hac, S., Dobrowolski, S., Śledziński, Z.: An unusual presentation of pancreatic pseudocyst mimicking cystic neoplasm of the pancreas: a case report. Cases J. 2(1), 9138 (2009)CrossRefGoogle Scholar
  5. 5.
    Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., Pal, C., Jodoin, P., Larochelle, H.: Brain Tumor Segmentation with Deep Neural Networks. Medical Image Analysis (2017)Google Scholar
  6. 6.
    Klauß, M., Schöbinger, M., Wolf, I., Werner, J., Meinzer, H., Kauczor, H., Grenacher, L.: Value of three-dimensional reconstructions in pancreatic carcinoma using multidetector CT: initial results. World J. Gastroenterol. 15(46), 5827–5832 (2009)CrossRefGoogle Scholar
  7. 7.
    Krizhevsky, A., Sutskever, I., Hinton, G.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems (2012)Google Scholar
  8. 8.
    Lasboo, A., Rezai, P., Yaghmai, V.: Morphological analysis of pancreatic cystic masses. Acad. Radiol. 17(3), 348–351 (2010)CrossRefGoogle Scholar
  9. 9.
    Lee, C., Xie, S., Gallagher, P., Zhang, Z., Tu, Z.: Deeply-Supervised Nets. In: International Conference on Artificial Intelligence and Statistics (2015)Google Scholar
  10. 10.
    Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Computer Vision and Pattern Recognition (2015)Google Scholar
  11. 11.
    Milletari, F., Navab, N., Ahmadi, S.: V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation. arXiv preprint arXiv:1606.04797 (2016)
  12. 12.
    Roth, H.R., Lu, L., Farag, A., Sohn, A., Summers, R.M.: Spatial aggregation of holistically-nested networks for automated pancreas segmentation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 451–459. Springer, Cham (2016). doi: 10.1007/978-3-319-46723-8_52 CrossRefGoogle Scholar
  13. 13.
    Roth, H.R., Lu, L., Farag, A., Shin, H.-C., Liu, J., Turkbey, E.B., Summers, R.M.: DeepOrgan: multi-level deep convolutional networks for automated pancreas segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 556–564. Springer, Cham (2015). doi: 10.1007/978-3-319-24553-9_68 CrossRefGoogle Scholar
  14. 14.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: International Conference on Learning Representations (2015)Google Scholar
  15. 15.
    Stewart, B., Wild, C., et al.: World Cancer Report 2014 (2014)Google Scholar
  16. 16.
    Wang, D., Khosla, A., Gargeya, R., Irshad, H., Beck, A.: Deep learning for identifying metastatic breast cancer. arXiv preprint arXiv:1606.05718 (2016)
  17. 17.
    Zhou, Y., Xie, L., Shen, W., Fishman, E., Yuille, A.: Pancreas Segmentation in Abdominal CT Scan: A Coarse-to-Fine Approach. arXiv preprint arXiv:1612.08230 (2016)

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Yuyin Zhou
    • 1
  • Lingxi Xie
    • 1
    Email author
  • Elliot K. Fishman
    • 2
  • Alan L. Yuille
    • 1
  1. 1.The Johns Hopkins UniversityBaltimoreUSA
  2. 2.The Johns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations