Advertisement

Segmentation of Cortical and Subcortical Multiple Sclerosis Lesions Based on Constrained Partial Volume Modeling

  • Mário João FartariaEmail author
  • Alexis Roche
  • Reto Meuli
  • Cristina Granziera
  • Tobias Kober
  • Meritxell Bach Cuadra
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10435)

Abstract

We propose a novel method to automatically detect and segment multiple sclerosis lesions, located both in white matter and in the cortex. The algorithm consists of two main steps: (i) a supervised approach that outputs an initial bitmap locating candidates of lesional tissue and (ii) a Bayesian partial volume estimation framework that estimates the lesion concentration in each voxel. By using a “mixel” approach, potential partial volume effects especially affecting small lesions can be modeled, thus yielding improved lesion segmentation. The proposed method is tested on multiple MR image sequences including 3D MP2RAGE, 3D FLAIR, and 3D DIR. Quantitative evaluation is done by comparison with manual segmentations on a cohort of 39 multiple sclerosis early-stage patients.

Keywords

Cortical lesions Partial volume Multiple sclerosis MRI Lesion segmentation 

References

  1. 1.
    Rovira, À., Wattjes, M.P., et al.: Evidence-based guidelines: MAGNIMS consensus guidelines on the use of MRI in multiple sclerosis clinical implementation in the diagnostic process. Nat. Rev. Neurol. 11(8), 471–482 (2015)CrossRefGoogle Scholar
  2. 2.
    Calabrese, M., Filippi, M., Gallo, P.: Cortical lesions in multiple sclerosis. Nat. Rev. Neurol. 6(8), 438–444 (2010)CrossRefGoogle Scholar
  3. 3.
    García-Lorenzo, D., Francis, S., Narayanan, P.: Review of automatic segmentation methods of multiple sclerosis white matter lesions on conventional magnetic resonance imaging. Med. Image Anal. 17(1), 1–18 (2013)CrossRefGoogle Scholar
  4. 4.
    Kober, T., Granziera, C., et al.: MP2RAGE multiple sclerosis magnetic resonance imaging at 3 T. Investig. Radiol. 47(6), 346–352 (2012)CrossRefGoogle Scholar
  5. 5.
    Fartaria, M.J., Bonnier, G., Roche, A., et al.: Automated detection of white matter and cortical lesions in early stages of multiple sclerosis. J. Magn. Reson. Imaging 43(6), 1445–1454 (2016)CrossRefGoogle Scholar
  6. 6.
    Anbeek, P., et al.: Probabilistic segmentation of white matter lesions in MR imaging. NeuroImage 21(3), 1037–1044 (2004)CrossRefGoogle Scholar
  7. 7.
    Choi, H.S., et al.: Partial volume tissue classification of multichannel magnetic resonance images - a mixel model. IEEE Trans. Med. Imaging 10(3), 395–407 (1991)CrossRefGoogle Scholar
  8. 8.
    Roche, A., Forbes, F.: Partial volume estimation in brain MRI revisited. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8673, pp. 771–778. Springer, Cham (2014). doi: 10.1007/978-3-319-10404-1_96 CrossRefGoogle Scholar
  9. 9.
    Khademi, A., et al.: Multiscale partial volume estimation for segmentation of white matter lesions using flair MRI. In: 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), pp. 568–571. IEEE (2015)Google Scholar
  10. 10.
    Wu, Y., Warfield, S.K., et al.: Automated segmentation of multiple sclerosis lesion subtypes with multichannel MRI. NeuroImage 32(3), 1205–1215 (2006)CrossRefGoogle Scholar
  11. 11.
    Jerman, T., Galimzianova, A., Pernuš, F., Likar, B., Špiclin, Ž.: Combining unsupervised and supervised methods for lesion segmentation. In: Crimi, A., Menze, B., Maier, O., Reyes, M., Handels, H. (eds.) BrainLes 2015. LNCS, vol. 9556, pp. 45–56. Springer, Cham (2016). doi: 10.1007/978-3-319-30858-6_5 CrossRefGoogle Scholar
  12. 12.
    Van Leemput, K., Maes, F., Vandermeulen, D., Suetens, P.: A unifying framework for partial volume segmentation of brain MR images. IEEE Trans. Med. Imaging 22(1), 105–119 (2003)CrossRefzbMATHGoogle Scholar
  13. 13.
    Klein, S., Staring, M., et al.: Elastix: a toolbox for intensity-based medical image registration. IEEE Trans. Med. Imaging 29(1), 196–205 (2010)CrossRefGoogle Scholar
  14. 14.
    Schmitter, D., Roche, A., et al.: An evaluation of volume-based morphometry for prediction of mild cognitive impairment and Alzheimer’s disease. NeuroImage Clin. 7, 7–17 (2015)CrossRefGoogle Scholar
  15. 15.
    Tustison, N.J., Avants, B.B., et al.: N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging 29(6), 1310–1320 (2010)CrossRefGoogle Scholar
  16. 16.
    Nyúl, L.G., Udupa, J.K., Zhang, X.: New variants of a method of MRI scale standardization. IEEE Trans. Med. Imaging 19(2), 143–150 (2000)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Mário João Fartaria
    • 1
    • 2
    • 3
    Email author
  • Alexis Roche
    • 1
    • 2
  • Reto Meuli
    • 2
  • Cristina Granziera
    • 4
    • 5
  • Tobias Kober
    • 1
    • 2
    • 3
  • Meritxell Bach Cuadra
    • 2
    • 3
    • 6
  1. 1.Advanced Clinical Imaging TechnologySiemens Healthcare AGLausanneSwitzerland
  2. 2.Department of RadiologyCHUV and UNILLausanneSwitzerland
  3. 3.Signal Processing Laboratory (LTS 5)EPFLLausanneSwitzerland
  4. 4.Martinos Center for Biomedical Imaging, MGH and HMSChalestownUSA
  5. 5.Department of Clinical NeuroscienceCHUV and UNILLausanneSwitzerland
  6. 6.Center of Biomedical Imaging, CIBMUNILLausanneSwitzerland

Personalised recommendations