Advertisement

Pivoting Rules

  • Nikolaos Ploskas
  • Nikolaos Samaras
Chapter
Part of the Springer Optimization and Its Applications book series (SOIA, volume 127)

Abstract

Simplex-type algorithms perform successive pivoting operations (or iterations) in order to reach the optimal solution. The choice of the pivot element at each iteration is one of the most critical steps in simplex-type algorithms. The flexibility of the entering and leaving variable selection allows to develop various pivoting rules. This chapter presents six pivoting rules used in each iteration of the simplex algorithm to determine the entering variable: (i) Bland’s rule, (ii) Dantzig’s rule, (iii) Greatest Increment Method, (iv) Least Recently Considered Method, (v) Partial Pricing rule, and (vi) Steepest Edge rule. Each technique is presented with: (i) its mathematical formulation, (ii) a thorough numerical example, and (iii) its implementation in MATLAB. Finally, a computational study is performed. The aim of the computational study is twofold: (i) compare the execution time of the presented pivoting rules, and (ii) highlight the impact of the choice of the pivoting rule in the number of iterations and the execution time of the revised simplex algorithm.

Supplementary material

334954_1_En_6_MOESM1_ESM.zip (5 kb)
chapter 6 (Zip 6 kb)

References

  1. 1.
    Bazaraa, M. S., Jarvis, J. J., & Sherali, H. D. (1990). Linear programming and network flows. New York: John Wiley & Sons, Inc.Google Scholar
  2. 2.
    Benichou, M., Gautier, J., Hentges, G., & Ribiere, G. (1977). The efficient solution of large–scale linear programming problems. Mathematical Programming, 13, 280–322.MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bland, R. G. (1977). New finite pivoting rules for the simplex method. Mathematics of Operations Research, 2(2), 103–107.MathSciNetCrossRefGoogle Scholar
  4. 4.
    Clausen, J. (1987). A note on Edmonds-Fukuda’s pivoting rule for the simplex method. European Journal of Operations Research, 29, 378–383.CrossRefGoogle Scholar
  5. 5.
    Dantzig, G. B. (1963). Linear programming and extensions. Princeton, NJ: Princeton University Press.zbMATHGoogle Scholar
  6. 6.
    Forrest, J. J., & Goldfarb, D. (1992). Steepest-edge simplex algorithms for linear programming. Mathematical Programming, 57(1–3), 341–374.MathSciNetCrossRefGoogle Scholar
  7. 7.
    Fukuda, K. (1982). Oriented matroid programming. Ph.D. Thesis, Waterloo University, Waterloo, Ontario, Canada.Google Scholar
  8. 8.
    Fukuda, K., & Terlaky, T. (1999). On the existence of a short admissible pivot sequence for feasibility and linear optimization problems. Pure Mathematics and Applications, 10(4), 431–447MathSciNetzbMATHGoogle Scholar
  9. 9.
    Gärtner, B. (1995). Randomized optimization by simplex-type methods. Ph.D. thesis, Freien Universität, Berlin.Google Scholar
  10. 10.
    Goldfarb, D., & Reid, J. K. (1977). A practicable steepest–edge simplex algorithm. Mathematical Programming, 12(3), 361–371.MathSciNetCrossRefGoogle Scholar
  11. 11.
    Harris, P. M. J. (1973). Pivot selection methods for the Devex LP code. Mathematical Programming, 5, 1–28.MathSciNetCrossRefGoogle Scholar
  12. 12.
    Klee, V., & Minty, G. J. (1972). How good is the simplex algorithm. In O. Shisha (ed.) Inequalities – III. New York and London: Academic Press Inc.Google Scholar
  13. 13.
    Maros, I., & Khaliq, M. H. (1999). Advances in design and implementation of optimization software. European Journal of Operational Research, 140(2), 322–337.MathSciNetCrossRefGoogle Scholar
  14. 14.
    Murty, K. G. (1974). A note on a Bard type scheme for solving the complementarity problem. Opsearch, 11, 123–130.MathSciNetGoogle Scholar
  15. 15.
    Papadimitriou, C. H., & Steiglitz, K. (1982). Combinatorial optimization: algorithms and complexity. Englewood Cliffs, NJ: Prentice-Hall, Inc.zbMATHGoogle Scholar
  16. 16.
    Ploskas, N. (2014). Hybrid optimization algorithms: implementation on GPU. Ph.D. thesis, Department of Applied Informatics, University of Macedonia.Google Scholar
  17. 17.
    Ploskas, N., & Samaras, N. (2014). Pivoting rules for the revised simplex algorithm. Yugoslav Journal of Operations Research, 24(3), 321–332.MathSciNetCrossRefGoogle Scholar
  18. 18.
    Ploskas, N., & Samaras, N. (2014). GPU accelerated pivoting rules for the simplex algorithm. Journal of Systems and Software, 96, 1–9.CrossRefGoogle Scholar
  19. 19.
    Świetanowski, A. (1998). A new steepest edge approximation for the simplex method for linear programming. Computational Optimization and and Applications, 10(3), 271–281.MathSciNetCrossRefGoogle Scholar
  20. 20.
    Terlaky, T., & Zhang, S. (1993). Pivot rules for linear programming: a survey on recent theoretical developments. Annals of Operations Research, 46(1), 203–233.MathSciNetCrossRefGoogle Scholar
  21. 21.
    Thomadakis, M. E. (1994). Implementation and evaluation of primal and dual simplex methods with different pivot-selection techniques in the LPBench environment. A research report. Texas A&M University, Department of Computer Science.Google Scholar
  22. 22.
    Van Vuuren, J. H., & Grundlingh, W. R. (2001). An active decision support system for optimality in open air reservoir release strategies. International Transactions in Operational Research, 8(4), 439–464.CrossRefGoogle Scholar
  23. 23.
    Wang, Z. (1989). A modified version of the Edmonds-Fukuda algorithm for LP problems in the general form. Asia-Pacific Journal of Operational Research, 8(1), 55–61.MathSciNetzbMATHGoogle Scholar
  24. 24.
    Zadeh, N. (1980). What is the worst case behavior of the simplex algorithm. Technical report, Department of Operations Research, Stanford University.zbMATHGoogle Scholar
  25. 25.
    Zhang, S. (1991). On anti-cycling pivoting rules for the simplex method. Operations Research Letters, 10, 189–192.MathSciNetCrossRefGoogle Scholar
  26. 26.
    Ziegler, G. M. (1990). Linear programming in oriented matroids. Technical Report No. 195, Institut für Mathematik, Universität Augsburg, Germany.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Nikolaos Ploskas
    • 1
  • Nikolaos Samaras
    • 1
  1. 1.Department of Applied InformaticsUniversity of MacedoniaThessalonikiGreece

Personalised recommendations