Advertisement

Linear Programming Benchmark and Random Problems

  • Nikolaos Ploskas
  • Nikolaos Samaras
Chapter
Part of the Springer Optimization and Its Applications book series (SOIA, volume 127)

Abstract

Mathematical Programming System (MPS) format is a widely accepted standard for defining LPs. The vast majority of solvers takes as input an LP problem in MPS format. The given LP problem can be either a benchmark problem, i.e., a problem that is publicly available, or a randomly generated LP problem. This chapter presents the MPS format and two codes in MATLAB that can be used to convert an MPS file to MATLAB’s matrix format (MAT) and vice versa. Moreover, codes that can be used to create randomly generated sparse or dense LPs are also given. Finally, the most well-known benchmark libraries for LPs are also presented.

Supplementary material

334954_1_En_3_MOESM1_ESM.zip (13 kb)
chapter3 (Zip 13 kb)

References

  1. 1.
    Netlib Repository. (2017). Netlib LP test set. Available online at: http://www.netlib.org/lp/data/ (Last access on March 31, 2017).
  2. 2.
    Netlib Repository. (2017). Kennington LP test set. Available online at: http://www.netlib.org/lp/data/kennington/ (Last access on March 31, 2017).
  3. 3.
    Netlib Repository. (2017). infeas section of the Netlib LP test set. Available online at: http://www.netlib.org/lp/infeas/ (Last access on March 31, 2017).
  4. 4.
    Mészáros, C. (2017). The misc section of the Mészáros LP test set. Available online at: http://www.sztaki.hu/~meszaros/public_ftp/lptestset/misc/ (Last access on March 31, 2017).
  5. 5.
    Mészáros, C. (2017). The problematic section of the Mészáros LP test set. Available online at: http://www.sztaki.hu/~meszaros/public_ftp/lptestset/problematic/ (Last access on March 31, 2017).
  6. 6.
    Mészáros, C. (2017). The new section of the Mészáros LP test set. Available online at: http://www.sztaki.hu/~meszaros/public_ftp/lptestset/New/ (Last access on March 31, 2017).
  7. 7.
    Mészáros, C. (2017). The stochlp section of the Mészáros LP test set. Available online at: http://www.sztaki.hu/~meszaros/public_ftp/lptestset/stochlp/ (Last access on March 31, 2017).
  8. 8.
    Mittelmann, H. (2017). The Mittelmann LP test set. Available online at: http://plato.asu.edu/ftp/lptestset/ (Last access on March 31, 2017).
  9. 9.
    Paparrizos, K., Samaras, N., & Stephanides, G. (2000). A method for generating random optimal linear problems and a comparative computational study. In Proceedings of the 13th National Conference Hellenic Operational Research Society, 30 November–2 December, University of Piraeus, Greece, 785–794 (In Greek).Google Scholar
  10. 10.
    Ordez, F., & Freund, R. M. (2003). Computational experience and the explanatory value of condition measures for linear optimization. SIAM Journal on Optimization, 14(2), 307–333.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Nikolaos Ploskas
    • 1
  • Nikolaos Samaras
    • 1
  1. 1.Department of Applied InformaticsUniversity of MacedoniaThessalonikiGreece

Personalised recommendations