Advertisement

Introduction

  • Nikolaos Ploskas
  • Nikolaos Samaras
Chapter
Part of the Springer Optimization and Its Applications book series (SOIA, volume 127)

Abstract

The Linear Programming (LP) problem is perhaps the most important and well-studied optimization problem. Numerous real world problems can be formulated as Linear Programming problems (LPs). LP algorithms have been used in many fields ranging from airline scheduling to logistics, transportation, decision making, and data mining. This chapter introduces some key features of LP and presents a brief history of LP algorithms. Finally, the reasons of the novelty of this book and its organization are also presented.

Supplementary material

334954_1_En_1_MOESM1_ESM.zip (8.8 mb)
appendix a appendix b benchmarkLPs (Zip 7 kb)

References

  1. 1.
    Bixby, E. R. (1992). Implementing the simplex method: The initial basis. ORSA Journal on Computing, 4, 267–284.MathSciNetCrossRefGoogle Scholar
  2. 2.
    Borgwardt, H. K. (1982). The average number of pivot steps required by the simplex method is polynomial. Zeitschrift fur Operational Research, 26(1), 157–177.MathSciNetzbMATHGoogle Scholar
  3. 3.
    Dantzig, G. B. (1949). Programming in linear structure. Econometrica, 17, 73–74.CrossRefGoogle Scholar
  4. 4.
    Dantzig, G. B. (1963). Linear programming and extensions. Princeton, NJ: Princeton University Press.zbMATHGoogle Scholar
  5. 5.
    Dongarra, J., & Sullivan, F. (2000). Guest editors’ introduction: The top 10 algorithms. Computing in Science & Engineering, 22–23.Google Scholar
  6. 6.
    Forrest, J. J., & Goldfarb, D. (1992). Steepest-edge simplex algorithms for linear programming. Mathematical Programming, 57(1–3), 341–374.MathSciNetCrossRefGoogle Scholar
  7. 7.
    Fourer, R. (1994). Notes on the dual simplex method. Draft report.Google Scholar
  8. 8.
    Frisch, K. F. (1955). The logarithmic potential method of convex programming. Technical report, University Institute of Economics, Oslo, Norway.Google Scholar
  9. 9.
    Glavelis, T., & Samaras, N. (2013). An experimental investigation of a primal–dual exterior point simplex algorithm. Optimization, 62(8), 1143–1152.MathSciNetCrossRefGoogle Scholar
  10. 10.
    Gondzio, J. (1992). Splitting dense columns of constraint matrix in interior point methods for large-scale linear programming. Optimization, 24, 285–297.MathSciNetCrossRefGoogle Scholar
  11. 11.
    Gondzio, J. (1996). Multiple centrality corrections in a primal-dual method for linear programming. Computational Optimization and Applications, 6, 137–156.MathSciNetCrossRefGoogle Scholar
  12. 12.
    Hoffman, A. J., Mannos, M., Sokolowsky, D., & Wiegman, N. (1953). Computational experience in solving linear programs. Journal of the Society for Industrial and Applied Mathematics, 1, 17-33.MathSciNetCrossRefGoogle Scholar
  13. 13.
    Karmarkar, N. K. (1984). A new polynomial-time algorithm for linear programming. Combinatorica, 4, 373–395.MathSciNetCrossRefGoogle Scholar
  14. 14.
    Khachiyan, L. G. (1979). A polynomial algorithm in linear programming. Soviet Mathematics Doklady, 20, 191–194.zbMATHGoogle Scholar
  15. 15.
    Klee, V., & Minty, G. J. (1972). How good is the simplex algorithm. In O. Shisha (Ed.), Inequalities - III. New York and London: Academic Press Inc.Google Scholar
  16. 16.
    Lemke, C. E. (1954). The dual method of solving the linear programming problem. Naval Research Logistics Quarterly, 1(1), 36–47.MathSciNetCrossRefGoogle Scholar
  17. 17.
    Lustig, I. J., Marsten, R. E., & Shanno, D. F. (1992). On implementing Mehrotra’s predictor corrector interior point method for linear programming. SIAM Journal on Optimization, 2, 435–449.MathSciNetCrossRefGoogle Scholar
  18. 18.
    Mehrotra, S. (1992). On the implementation of a primal-dual interior point method. SIAM Journal on Optimization, 2, 575–601.MathSciNetCrossRefGoogle Scholar
  19. 19.
    Paparrizos, K. (1991). An infeasible exterior point simplex algorithm for assignment problems. Mathematical Programming, 51(1–3), 45–54.MathSciNetCrossRefGoogle Scholar
  20. 20.
    Paparrizos, K. (1993). An exterior point simplex algorithm for (general) linear programming problems. Annals of Operations Research, 47, 497–508.MathSciNetCrossRefGoogle Scholar
  21. 21.
    Paparrizos, K., Samaras, N., & Stephanides, G. (2003). An efficient simplex type algorithm for sparse and dense linear programs. European Journal of Operational Research, 148(2), 323–334.MathSciNetCrossRefGoogle Scholar
  22. 22.
    Paparrizos, K., Samaras, N., & Stephanides, G. (2003). A new efficient primal dual simplex algorithm. Computers & Operations Research, 30(9), 1383–1399.MathSciNetCrossRefGoogle Scholar
  23. 23.
    Samaras, N. (2001). Computational improvements and efficient implementation of two path pivoting algorithms. Ph.D. dissertation, Department of Applied Informatics, University of Macedonia (in Greek).Google Scholar
  24. 24.
    Samaras, N., Sifelaras, A., & Triantafyllidis, C. (2009). A primal-dual exterior point algorithm for linear programming problems. Yugoslav Journal of Operations Research, 19(1), 123–132.MathSciNetCrossRefGoogle Scholar
  25. 25.
    Von Neumann, J. (1947). On a maximization problem. Technical report, Institute for Advanced Study, Princeton, NJ, USA.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Nikolaos Ploskas
    • 1
  • Nikolaos Samaras
    • 1
  1. 1.Department of Applied InformaticsUniversity of MacedoniaThessalonikiGreece

Personalised recommendations