Advertisement

Minimally Invasive Surgical Treatment of Macular Hemorrhages

  • Lars-Olof Hattenbach
Chapter

Abstract

  • To date, there is overwhelming evidence that the intravitreal administration of rt-PA, anti-VEGF agents, and hexafluoride gas has the potential to improve vision or delay the progression of visual loss in patients with submacular hemorrhage.

  • Core vitrectomy has an additional beneficial effect and may be combined with the intravitreal injection of drugs. The complication rate of this minimally invasive technique seems to be low.

  • Time to treatment and hemorrhage size are among the characteristics that significantly affect the outcome. Early minimally invasive intervention provides a better chance for prompt recovery of useful vision in patients with recent onset (≤14 days) of subretinal hemorrhage. This advantage appears to be clearly present in the eyes with small (≤2 disc areas) subfoveal hemorrhages.

  • In the vast majority of cases, subretinal hemorrhage is associated with exudative age-related macular degeneration and therefore requires continued postoperative treatment with anti-VEGF agents. Successful displacement of submacular blood may yield a rapid visual rehabilitation, presumably helps prevent further damage to the neurosensory retina, and provides better chances for a successful treatment of underlying choroidal neovascular membranes with anti-VEGF agents.

  • Early core vitrectomy and pneumatic displacement are reasonable treatment alternatives in patients with subretinal or subhyaloidal hemorrhage secondary to underlying conditions other than AMD such as retinal macroaneurysms.

  • Small subretinal hemorrhages (≤2 disc areas) associated with choroidal neovascularization secondary to age-related macular degeneration respond well to anti-VEGF monotherapy.

References

  1. 1.
    Avery RL, Fekrat S, Hawkins BS, Bressler NM. Natural history of subfoveal subretinal hemorrhage in age-related macular degeneration. Retina. 1996;16:183–9.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Bennett SR, Folk JC, Blodi CF, Klugman M. Factors prognostic of visual outcome in patients with subretinal hemorrhage. Am J Ophthalmol. 1990;109:33–7.CrossRefGoogle Scholar
  3. 3.
    Berrocal MH, Lewis ML, Flynn HW Jr. Variations in the clinical course of submacular hemorrhage. Am J Ophthalmol. 1996;122:486–93.CrossRefGoogle Scholar
  4. 4.
    Wood WJ, Smith TR. Senile disciform macular degeneration complicated by massive hemorrhagic retinal detachment and angle closure glaucoma. Retina. 1983;3:296–303.CrossRefPubMedGoogle Scholar
  5. 5.
    Scupola A, Coscas G, Soubrane G, Balestrazzi E. Natural history of macular subretinal hemorrhage in age-related macular degeneration. Ophthalmologica. 1999;213:97–102.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Glatt H, Machemer R. Experimental subretinal hemorrhage in rabbits. Ophthalmology. 1982;94:762–73.Google Scholar
  7. 7.
    Toth CA, Morse LS, Hjelmeland LM, Landers MB III. Fibrin directs early retinal damage after experimental subretinal hemorrhage. Arch Ophthalmol. 1991;109:723–9.CrossRefPubMedGoogle Scholar
  8. 8.
    de Juan E Jr, Machemer R. Vitreous surgery for hemorrhagic and fibrous complications of age-related macular degeneration. Am J Ophthalmol. 1988;105:25–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Ibanez HE, Williams DF, Thomas MA, et al. Surgical management of submacular hemorrhage. Arch Ophthalmol. 1995;113:62–9.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Lim JI, Drews-Botsch C, Sternberg P Jr, et al. Submacular hemorrhage removal. Ophthalmology. 1995;102:1393–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Vander JF, Federman JL, Greven C, et al. Surgical removal of massive subretinal hemorrhage associated with age-related macular degeneration. Ophthalmology. 1991;98:23–7.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kamei M, Tano Y, Maeno T, et al. Surgical removal of submacular hemorrhage using tissue plasminogen activator and perfluorocarbon liquid. Am J Ophthalmol. 1996;121:267–75.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Lewis H. Intraoperative fibrinolysis of submacular hemorrhage with tissue plasminogen activator and surgical drainage. Am J Ophthalmol. 1994;118:559–68.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Heriot WJ. Intravitreal gas and tPA: an outpatient procedure for submacular hemorrhage. Vail vitrectomy meeting, Vail, Colorado, 10–15 March 1996.Google Scholar
  15. 15.
    Benner JD, Hay A, Landers MB III, et al. Fibrinolytic-assisted removal of experimental subretinal hemorrhage within seven days reduces outer retinal degeneration. Ophthalmology. 1994;101:672–81.CrossRefPubMedGoogle Scholar
  16. 16.
    Boone DE, Boldt HC, Ross RD, et al. The use of intravitreal tissue plasminogen activator in the treatment of experimental subretinal hemorrhage in the pig model. Retina. 1996;16:518–24.CrossRefPubMedGoogle Scholar
  17. 17.
    Chaudhry NA, Mieler WF, Han DP, et al. Preoperative use of tissue plasminogen activator for large submacular hemorrhage. Ophthalmic Surg Lasers. 1999;30:176–80.PubMedGoogle Scholar
  18. 18.
    Jaffe GJ, Abrams GW, Williams GA, Han DP. Tissue plasminogen activator for postvitrectomy fibrin formation. Ophthalmology. 1990;97:184–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Jaffe GJ, Green GDJ, McKay BS, et al. Intravitreal clearance of tissue plasminogen activator in the rabbit. Arch Ophthalmol. 1988;106:969–72.CrossRefPubMedGoogle Scholar
  20. 20.
    Morse LS, Benner JD, Hjelmeland LM, Landers MB III. Fibrinolysis of experimental subretinal haemorrhage without removal using tissue plasminogen activator. Br J Ophthalmol. 1996;80:658–62.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Coll GE, Sparrow JR, Marinovic A, Chang S. Effect of intravitreal tissue plasminogen activator on experimental subretinal hemorrhage. Retina. 1995;15:319–26.CrossRefPubMedGoogle Scholar
  22. 22.
    Takeuchi A, Kricorian G, Yao XY, et al. The rate and source of albumin entry into saline-filled experimental retinal detachments. Invest Ophthalmol Vis Sci. 1994;35:3792–8.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Hesse L, Schroeder B, Heller G, Kroll P. Quantitative effect of intravitreally injected tissue plasminogen activator and gas on subretinal hemorrhage. Retina. 2000;20(5):500.CrossRefGoogle Scholar
  24. 24.
    Hattenbach LO, Klais C, Koch FHJ, Gümbel HOC. Intravitreous injection of tissue plasminogen activator and gas in the treatment of submacular hemorrhage under various conditions. Ophthalmology. 2001;108:1485–92.CrossRefGoogle Scholar
  25. 25.
    Hassan AS, Johnson MW, Schneiderman TE, et al. Management of submacular hemorrhage with intravitreous tissue plasminogen activator injection and pneumatic displacement. Ophthalmology. 1999;106:1900–6.CrossRefGoogle Scholar
  26. 26.
    Hesse L, Schmidt J, Kroll P. Management of acute submacular hemorrhage using recombinant tissue plasminogen activator and gas. Graefes Arch Clin Exp Ophthalmol. 1999;237:273–7.CrossRefGoogle Scholar
  27. 27.
    Johnson MW, Olsen KR, Hernandez E. Tissue plasminogen activator treatment of experimental subretinal hemorrhage. Retina. 1991;11:250–8.CrossRefGoogle Scholar
  28. 28.
    Hrach CJ, Johnson MW, Hassan AS, et al. Retinal toxicity of commercial intravitreal tissue plasminogen activator solution in cat eyes. Arch Ophthalmol. 2000;118:659–63.CrossRefGoogle Scholar
  29. 29.
    Ohji M, Saito Y, Hayashi A, et al. Pneumatic displacement of subretinal hemorrhage without tissue plasminogen activator. Arch Ophthalmol. 1998;116:1326–32.CrossRefGoogle Scholar
  30. 30.
    Hattenbach LO, Brieden M, Koch F, Gümbel H. [Intravitreal injection of rt-PA and gas in the management of minor submacular haemorrhages secondary to age-related macular degeneration]. Klin Monbl Augenheilkd. 2002;219:512–8.Google Scholar
  31. 31.
    Lewis H, Resnick SC, Flannery JG, Straatsma BR. Tissue plasminogen activator treatment of experimental subretinal hemorrhage. Am J Ophthalmol. 1991;111:197–204.CrossRefPubMedGoogle Scholar
  32. 32.
    Boyer DS, Antoszyk AN, Awh CC, Bhisitkul RB, Shapiro H, Acharya NR, MARINA Study Group. Subgroup analysis of the MARINA study of ranibizumab in neovascular age-related macular degeneration. Ophthalmology. 2007;114(2):246–52.CrossRefPubMedGoogle Scholar
  33. 33.
    Brown DM, Michels M, Kaiser PK, Heier JS, Sy JP, Ianchulev T, ANCHOR Study Group. Ranibizumab versus verteporfin photodynamic therapy for neovascular age-related macular degeneration: two-year results of the ANCHOR study. Ophthalmology. 2009;116(1):57–65.CrossRefPubMedGoogle Scholar
  34. 34.
    Rosenfeld PJ, Brown DM, Heier JS, Boyer DS, Kaiser PK, Chung CY, Kim RY, MARINA Study Group. Ranibizumab for neovascular age-related macular degeneration. N Engl J Med. 2006;355(14):1419–31.CrossRefGoogle Scholar
  35. 35.
    Wolf S, Holz FG, Korobelnik JF, Lanzetta P, Mitchell P, Prünte C, Schmidt-Erfurth U, Weichselberger A, Hashad Y. Outcomes following three-line vision loss during treatment of neovascular age-related macular degeneration: subgroup analyses from MARINA and ANCHOR. Br J Ophthalmol. 2011;95(12):1713–8.CrossRefPubMedGoogle Scholar
  36. 36.
    Altaweel MM, Daniel E, Martin DF, Mittra RA, Grunwald JE, Lai MM, Melamud A, Morse LS, Huang J, Ferris FL III, Fine SL, Maguire MG, Comparison of Age-related Macular Degeneration Treatments Trials (CATT) Research Group; Comparison of Age-related Macular Degeneration Treatments Trials CATT Research Group. Outcomes of eyes with lesions composed of >50% blood in the Comparison of Age-related Macular Degeneration Treatments Trials (CATT). Ophthalmology. 2015;122(2):391–8.CrossRefPubMedGoogle Scholar
  37. 37.
    Shin JY, Lee JM, Byeon SH. Anti-vascular endothelial growth factor with or without pneumatic displacement for submacular hemorrhage. Am J Ophthalmol. 2015;159(5):904–14.CrossRefPubMedGoogle Scholar
  38. 38.
    Ying GS, Maguire MG, Daniel E, Grunwald JE, Ahmed O, Martin DF. Comparison of Age-Related Macular Degeneration Treatments Trials Research Group. Association between antiplatelet or anticoagulant drugs and retinal or subretinal hemorrhage in the Comparison of Age-Related Macular Degeneration Treatments Trials. Ophthalmology. 2016;123(2):352–60.CrossRefPubMedGoogle Scholar
  39. 39.
    Sharei V, Höhn F, Köhler T, Hattenbach LO, Mirshahi A. Course of intraocular pressure after intravitreal injection of 0.05 mL ranibizumab (Lucentis). Eur J Ophthalmol. 2010;20(1):174–9.CrossRefPubMedGoogle Scholar
  40. 40.
    Höhn F, Mirshahi A, Hattenbach LO. [Combined intravitreal injection of bevacizumab and SF6 gas for treatment of submacular hemorrhage secondary to age-related macular degeneration]. Ophthalmologe. 2010;107(4):328–32.Google Scholar
  41. 41.
    Klettner A, Grotelüschen S, Treumer F, Roider J, Hillenkamp J. Compatibility of recombinant tissue plasminogen activator (rtPA) and aflibercept or ranibizumab coapplied for neovascular age-related macular degeneration with submacular haemorrhage. Br J Ophthalmol. 2015;99(6):864–9.CrossRefPubMedGoogle Scholar
  42. 42.
    Klettner A, Puls S, Treumer F, Roider J, Hillenkamp J. Compatibility of recombinant tissue plasminogen activator and bevacizumab co-applied for neovascular age-related macular degeneration with submacular hemorrhage. Arch Ophthalmol. 2012;130(7):875–81.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Meyer CH, Scholl HP, Eter N, Helb HM, Holz FG. Combined treatment of acute subretinal haemorrhages with intravitreal recombined tissue plasminogen activator, expansile gas and bevacizumab: a retrospective pilot study. Acta Ophthalmol. 2008;86(5):490–4.CrossRefPubMedGoogle Scholar
  44. 44.
    Kadonosono K, Arakawa A, Yamane S, Inoue M, Yamakawa T, Uchio E, Yanagi Y. Displacement of submacular hemorrhages in age-related macular degeneration with subretinal tissue plasminogen activator and air. Ophthalmology. 2015;122(1):123–8.CrossRefPubMedGoogle Scholar
  45. 45.
    Ritzau-Tondrow U, Baraki H, Hoerauf H. [Minimally invasive therapy of submacular hemorrhage in exsudative age-related macular degeneration]. Ophthalmologe. 2012;109(7):670–5.CrossRefGoogle Scholar
  46. 46.
    Hillenkamp J, Klettner A, Puls S, Treumer F, Subretinal RJ. co-application of rtPA and bevacizumab for exudative AMD with submacular hemorrhage. Compatibility and clinical long-term results. Ophthalmologe. 2012;109(7):648–56.CrossRefPubMedGoogle Scholar
  47. 47.
    Chang W, Garg SJ, Maturi R, Hsu J, Sivalingam A, Gupta SA, Regillo CD, Ho AC. Management of thick submacular hemorrhage with subretinal tissue plasminogen activator and pneumatic displacement for age-related macular degeneration. Am J Ophthalmol. 2014;157(6):1250–7.CrossRefGoogle Scholar
  48. 48.
    Hillenkamp J, Surguch V, Framme C, Gabel VP, Sachs HG. Management of submacular hemorrhage with intravitreal versus subretinal injection of recombinant tissue plasminogen activator. Graefes Arch Clin Exp Ophthalmol. 2010;248(1):5–11.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Lars-Olof Hattenbach
    • 1
  1. 1.Department of OphthalmologyLudwigshafen HospitalLudwigshafenGermany

Personalised recommendations