An Introduction to Zooarchaeology pp 203-224 | Cite as
Human, Animal, Geological Causes of Bone Breakage
Abstract
This chapter reviews the history of bone breakage research in archaeology, from early studies that assumed spiral fractures were diagnostic traces of deliberate hominin weapon or tool making to those based upon actualistic research, which have shown that such breakage can be produced by multiple actors in a range of situations. The biomedical literature on bone as a material provides useful terms for understanding the circumstances under which bones break. This chapter describes static, dynamic, and torsional loading stresses and describes how intrinsic osteonal organization has a strong influence on overall fracture morphology. It outlines how break surfaces and fracture angles generally reflect the degree to which bone collagen fibers have deteriorated or bone mineral has been replaced in diagenesis. This chapter argues that the presence or absence of surface modifications is an independent line of evidence regarding the effector and actor of bone breakage.
Keywords
Fracture stress strain static loading dynamic loading torsional loading break morphologyReferences
- ASBMR. (2008). Bone Curriculum. http://depts.washington.edu/bonebio/ASBMRed/ASBMRed.html.
- Behrensmeyer, A. K. (1975). The taphonomy and paleoecology of Plio-Pleistocene vertebrate assemblages east of Lake Rudolph, Kenya. Bulletin of the Museum of Comparative Zoology, 146, 473–578.Google Scholar
- Behrensmeyer, A. K. (1978). Taphonomic and ecologic information from bone weathering. Paleobiology, 4, 150–162.CrossRefGoogle Scholar
- Biddick, K. A., & Tomenchuk, J. (1975). Quantifying continuous lesions and fractures on long bones. Journal of Field Archaeology, 2(3), 239–249.Google Scholar
- Biewener, A. A., & Taylor, C. R. (1986). Bone strain: A determinant of gait and speed? Journal of Experimental Biology, 123, 383–400.Google Scholar
- Binford, L. R. (1981). Bones: Ancient men and modern myths. New York: Academic Press.Google Scholar
- Binford, L. R., & Bertram, J. (1977). Bone frequencies – And attritional processes. In L. R. Binford (Ed.), For theory building in archaeology: Essays on faunal remains, aquatic resources, spatial analysis, and systemic modeling (pp. 77–153). New York: Academic Press.Google Scholar
- Blasco, R., Domínguez-Rodrigo, M., Arilla, M., Camarós, E., & Rosell, J. (2014). Breaking bones to obtain marrow: A comparative study between percussion by batting bone on an anvil and hammerstone percussion. Archaeometry, 56(6), 1085–1104.CrossRefGoogle Scholar
- Bonfield, W., & Li, C. H. (1966). Deformation and fracture of bone. Journal of Applied Physics, 37(2), 869–875.Google Scholar
- Bonnichsen, R. (1973). Some operational aspects of human and animal bone alteration. In B. M. Gilbert (Ed.), Mammalian osteoarchaeology: North America (pp. 9–24). Columbia: Missouri Archaeological Society.Google Scholar
- Bonnichsen, R. (1979). Pleistocene bone technology in the Beringian Refugium (Mercury Series, Archaeological Survey of Canada, Vol. 89). Ottawa: Museum of Man.Google Scholar
- Brain, C. K. (1967). Hottentot food remains and their bearing on the interpretation of fossil bone assemblages. Scientific Papers of the Namib Desert Research Station, 32, 1–7.Google Scholar
- Brain, C. K. (1969). The contribution of Namib Desert Hottentots to an understanding of australopithecine bone accumulations. Scientific Papers of the Namib Desert Research Station, 39, 13–22.Google Scholar
- Brain, C. K. (1981). The hunters or the hunted? An introduction to South African Cave taphonomy. Chicago: University of Chicago Press.Google Scholar
- Breuil, H. (1938). The use of bone implements in the Old Paleolithic period. Antiquity, 12(45), 56–67.CrossRefGoogle Scholar
- Breuil, H. (1939). Bone and antler industry of the Choukoutien Sinanthropus site. Palaeontologia Sinica, n.s. D, no. 6.Google Scholar
- Bunn, H. T. (1989). Diagnosing Plio-Pleistocene hominid activity with bone fracture evidence. In R. Bonnichsen & M. Sorg (Eds.), Bone modification (pp. 299–315). Orono, ME: Center for the Study of the First Americans, Institute for Quaternary Studies, University of Maine.Google Scholar
- Capaldo, S. D. (1997). Experimental determinations of carcass processing by Plio-Pleistocene hominids and carnivores at FLK 22 (Zinjanthropus), Olduvai Gorge, Tanzania. Journal of Human Evolution, 33(5), 555–597.CrossRefGoogle Scholar
- Currey, J. D. (2002). Bones: Structure and mechanics. Princeton: Princeton University Press.Google Scholar
- Dart, R. A. (1949). The predatory implemental technique of Australopithecus. American Journal of Physical Anthropology, 7(1), 1–38.CrossRefGoogle Scholar
- Dart, R. A. (1957). The osteodontokeratic culture of Australopithecus prometheus, Transvaal Museum Memoir (Vol. 10). Pretoria: The Transvaal Museum.Google Scholar
- Dart, R. A. (1959). Further light on australopithecine humeral and femoral weapons. American Journal of Physical Anthropology, 17(2), 87–93.CrossRefGoogle Scholar
- Davis, K. L. (1985). A taphonomic approach to experimental bone fracturing and applications to several South African pleistocene sites. Binghamton: SUNY Binghamton.Google Scholar
- Evans, F. G. (1957). Stress and strain in bones: Their relation to fractures and osteogenesis , American Lectures in Medical Physics (Vol. 296). Springfield, IL: Charles C. Thomas.Google Scholar
- Gifford, D. P. (1977). Observations of modern human settlements as an aid to archaeological interpretation. Doctoral dissertation, University of California, Berkeley.Google Scholar
- Gifford-Gonzalez, D. (1989). Ethnographic analogues for interpreting modified bones: Some cases from East Africa. In R. Bonnichsen & M. Sorg (Eds.), Bone modification (pp. 179–246). Orono, ME: Center for the Study of the First Americans, Institute for Quaternary Studies, University of Maine.Google Scholar
- Hare, P. E. (1980). Organic geochemistry of bone and its relation to the survival of bone in the natural environment. In A. K. Behrensmeyer & A. P. Hill (Eds.), Fossils in the making: Vertebrate taphonomy and paleoecology (pp. 208–219). Chicago: University of Chicago Press.Google Scholar
- Haynes, G. (1980). Evidence of carnivore gnawing on Pleistocene and Recent mammalian bones. Paleobiology, 6(3), 341–351.Google Scholar
- Haynes, G. (1983). Frequencies of spiral and green-bone fractures on ungulate limb bones in modern surface assemblages. American Antiquity, 48(1), 102–114.CrossRefGoogle Scholar
- Hill, A. P. (1975). Taphonomy of contemporary and late Cenozoic East African vertebrates. Doctoral dissertation, University of London.Google Scholar
- Johnson, E. (1982). Paleo-Indian bone expediency tools: Lubbock Lake and Bonfire Shelter. Canadian Journal of Anthropology, 2(2), 145–157.Google Scholar
- Johnson, E. (1985). Current developments in bone technology. Advances in Archaeological Method and Theory, 8, 157–235.CrossRefGoogle Scholar
- Johnson, E., & Holliday, V. T. (1986). The Archaic record at Lubbock Lake. Plains Anthropologist, Memoir 21, 31(114), 7–54.CrossRefGoogle Scholar
- Jopling, A. V., Irving, W. N., & Beebe, B. F. (1981). Stratigraphic, sedimentological and faunal evidence for the occurrence of pre-Sangamonian artefacts in Northern Yukon. Arctic, 34(1), 3–33.CrossRefGoogle Scholar
- Karr, L. P., & Outram, A. K. (2012a). Bone degradation and environment: Understanding, assessing and conducting archaeological experiments using modern animal bones. International Journal of Osteoarchaeology, 25(2), 201–212.CrossRefGoogle Scholar
- Karr, L. P., & Outram, A. K. (2012b). Tracking changes in bone fracture morphology over time: Environment, taphonomy, and the archaeological record. Journal of Archaeological Science, 39(2), 555–559.CrossRefGoogle Scholar
- Kitching, J. W. (1963). Bone, tooth and horn tools of Palaeolithic man: An account of the osteodontokeratic discoveries in Pinhole Cave, Derbyshire. Manchester: Manchester University Press.Google Scholar
- Lyman, R. L. (1984). Broken bones, bone expediency tools, and bone pseudotools: Lessons from the blast zone around Mount St. Helens, Washington. American Antiquity, 49(2), 315–333.CrossRefGoogle Scholar
- Lyman, R. L. (1994). Vertebrate taphonomy. Cambridge: Cambridge University Press.Google Scholar
- Marean, C. W., & Spencer, L. M. (1991). Impact of carnivore ravaging on zooarchaeological measures of element abundance. American Antiquity, 56(4), 645–658.CrossRefGoogle Scholar
- Marean, C. W., Abe, Y., Frey, C. J., & Randall, R. C. (2000). Zooarchaeological and taphonomic analysis of the Die Kelders Cave 1 Layers 10 and 11 Middle Stone Age larger mammal fauna. Journal of Human Evolution, 38(1), 197–233.CrossRefGoogle Scholar
- Marshall, F. B. (1986). Implications of bone modification in a Neolithic faunal assemblage for the study of early hominid butchery and subsistence practices. Journal of Human Evolution, 15(8), 661–672.Google Scholar
- Martin, R. B., & Burr, D. B. (1989). Structure, function, and adaptation of compact bone. New York: Raven Press.Google Scholar
- Martin, R. B., Burr, D. B., & Sharkey, N. A. (1998). Skeletal tissue mechanics. New York: Springer.CrossRefGoogle Scholar
- Martiniakova, M., Grosskopf, B., Omelka, R., Vondrakova, M., & Bauerova, M. (2006). Differences among species in compact bone tissue microstructure of mammalian skeleton: Use of a discriminant function analysis for species identification. Journal of Forensic Sciences, 51(6), 1235–1239.CrossRefGoogle Scholar
- Mengoni Goñalons, G. L. (1982). Notas zooarqueológicas I: Fracturas en huesos. Actas del VII Congreso Nacional de Arqueología, Colonia del Sacramento (Uruguay), 1980, (87–91). Montevideo: Centro de Estudios Arqueológicos.Google Scholar
- Morlan, R. E. (1983). Spiral fractures on limb bones: Which ones are artificial? In A. S. MacEachern & G. M. LeMoine (Eds.), Carnivores, humans scavengers and predators: A question of bone modification (pp. 241–269). Calgary: University of Calgary Archaeological Association.Google Scholar
- Morlan, R. E. (1984). Toward the definition of criteria for the recognition of artificial bone alterations. Quaternary Research, 22(2), 160–171.CrossRefGoogle Scholar
- Myers, T. P., Voorhies, M. R., & Corner, R. G. (1980). Spiral fractures and bone pseudotools at paleontological sites. American Antiquity, 45(3), 483–490.CrossRefGoogle Scholar
- Nalla, R. K., Kinney, J. H., & Ritchey, R. P. (2003). Mechanistic fracture criteria for the failure of human cortical bone. Nature Materials, 2, 164–168.CrossRefGoogle Scholar
- Oliver, J. S. (1993). Carcass processing by the Hadza: Bone breakage from butchery to consumption. In J. Hudson (Ed.), From bones to behavior: Ethnoarchaeological and experimental contributions to the interpretation of faunal remains (Vol. 21, pp. 200–227., Occasional Paper). Carbondale, IL: Center for Archaeological Investigations, Southern Illinois University Press.Google Scholar
- Richardson, P. R. K. (1980). Carnivore damage to antelope bones and its archaeological implications. Palaeontologia Africana, 23, 109–125.Google Scholar
- Richter, J. (1986). Experimental study of heat induced morphological changes in fish bone collagen. Journal of Archaeological Science, 13(5), 477–481.CrossRefGoogle Scholar
- Rubin, C. T., & Lanyon, L. E. (1982). Limb mechanics as a function of speed and gait: A study of functional strains in the radius and tibia of horse and dog. Journal of Experimental Biology, 101(1), 187–211.Google Scholar
- Sadek-Kooros, H. (1972). Primitive bone fracturing: A method of research. American Antiquity, 37(3), 369–382.CrossRefGoogle Scholar
- Sillen, A. (1989). Diagenesis of the inorganic phase of cortical bone. In T. D. Price (Ed.), The chemistry of prehistoric human bone (pp. 211–229). Cambridge: Cambridge University Press.Google Scholar
- Tappen, N. C., & Peske, G. R. (1970). Weathering cracks and split-line patterns in archaeological bone. American Antiquity, 35(3), 383–386.CrossRefGoogle Scholar
- Thompson, J. C. (2005). The impact of post-depositional processes on bone surface modification frequencies: a corrective strategy and its application to the Loiyangalani Site, Serengeti Plains, Tanzania. Journal of Taphonomy, 3(3), 67–90.Google Scholar
- Thorson, R. M., & Guthrie, R. D. (1984). River ice as a taphonomic agent: An alternative hypothesis for bone “artifacts.” Quaternary Research, 22(2), 172–188.Google Scholar
- Todd, L. C., & Rapson, D. J. (1988). Long bone fragmentation and interpretation of faunal assemblages: Approaches to comparative analysis. Journal of Archaeological Science, 15(3), 307–325.CrossRefGoogle Scholar
- Villa, P., & Mahieu, E. (1991). Breakage patterns of human long bones. Journal of Human Evolution, 21(1), 27–48.CrossRefGoogle Scholar
- Wang, X., Mabrey, J. D., & Agrawal, C. M. (1998). An interspecies comparison of bone fracture properties. Bio-medical Materials and Engineering, 8(1), 1–9.Google Scholar
- Wieberg, D. A. M., & Wescott, D. J. (2008). Estimating the timing of long bone fractures: Correlation between the postmortem interval, bone moisture content, and blunt force trauma fracture characteristics. Journal of Forensic Sciences, 53(5), 1028–1034.Google Scholar