Advertisement

Iterative Variable Elimination in ASP

  • Ricardo Gonçalves
  • Matthias KnorrEmail author
  • João Leite
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10423)

Abstract

In recent years, a large variety of approaches for forgetting in Answer Set Programming (ASP) have been proposed, in the form of specific operators, or classes of operators, following different principles and obeying different properties. A recent comprehensive overview of existing operators and properties provides a uniform picture of the landscape, including many novel results on relations between properties and operators. In this paper, we introduce four new properties not considered previously and show that these are indeed succinct and relevant additions providing novel results and insights, further strengthening established relations between existing operators. Most notably among these, the invariance to permutations of the order of forgetting a set of atoms iteratively raises interesting questions with surprising results.

Notes

Acknowledgments

This work was partially supported by Fundação para a Ciência e a Tecnologia (FCT) under UID/CEC/04516/2013, and grants SFRH/BPD/100906/2014 (R. Gonçalves) and SFRH/BPD/86970/2012 (M. Knorr).

References

  1. 1.
    Lin, F., Reiter, R.: How to progress a database. Artif. Intell. 92(1–2), 131–167 (1997)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Liu, Y., Wen, X.: On the progression of knowledge in the situation calculus. In: Walsh, T. (ed.) Proceedings of IJCAI, pp. 976–982. IJCAI/AAAI (2011)Google Scholar
  3. 3.
    Rajaratnam, D., Levesque, H.J., Pagnucco, M., Thielscher, M.: Forgetting in action. In: Baral, C., Giacomo, G.D., Eiter, T. (eds.) Proceedings of KR. AAAI Press (2014)Google Scholar
  4. 4.
    Lang, J., Liberatore, P., Marquis, P.: Propositional independence: formula-variable independence and forgetting. J. Artif. Intell. Res. (JAIR) 18, 391–443 (2003)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Zhang, Y., Foo, N.Y.: Solving logic program conflict through strong and weak forgettings. Artif. Intell. 170(8–9), 739–778 (2006)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Eiter, T., Wang, K.: Semantic forgetting in answer set programming. Artif. Intell. 172(14), 1644–1672 (2008)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Lang, J., Marquis, P.: Reasoning under inconsistency: a forgetting-based approach. Artif. Intell. 174(12–13), 799–823 (2010)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Wang, Z., Wang, K., Topor, R.W., Pan, J.Z.: Forgetting for knowledge bases in DL-lite. Ann. Math. Artif. Intell. 58(1–2), 117–151 (2010)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Kontchakov, R., Wolter, F., Zakharyaschev, M.: Logic-based ontology comparison and module extraction, with an application to DL-lite. Artif. Intell. 174(15), 1093–1141 (2010)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Konev, B., Ludwig, M., Walther, D., Wolter, F.: The logical difference for the lightweight description logic EL. J. Artif. Intell. Res. (JAIR) 44, 633–708 (2012)CrossRefGoogle Scholar
  11. 11.
    Konev, B., Lutz, C., Walther, D., Wolter, F.: Model-theoretic inseparability and modularity of description logic ontologies. Artif. Intell. 203, 66–103 (2013)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Lewis, C.I.: A survey of symbolic logic. University of California Press (1918). Republished by Dover (1960)Google Scholar
  13. 13.
    Bledsoe, W.W., Hines, L.M.: Variable elimination and chaining in a resolution-based prover for inequalities. In: Bibel, W., Kowalski, R. (eds.) CADE 1980. LNCS, vol. 87, pp. 70–87. Springer, Heidelberg (1980). doi: 10.1007/3-540-10009-1_7CrossRefGoogle Scholar
  14. 14.
    Larrosa, J.: Boosting search with variable elimination. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 291–305. Springer, Heidelberg (2000). doi: 10.1007/3-540-45349-0_22CrossRefGoogle Scholar
  15. 15.
    Larrosa, J., Morancho, E., Niso, D.: On the practical use of variable elimination in constraint optimization problems: ‘still-life’ as a case study. J. Artif. Intell. Res. (JAIR) 23, 421–440 (2005)CrossRefGoogle Scholar
  16. 16.
    Middeldorp, A., Okui, S., Ida, T.: Lazy narrowing: strong completeness and eager variable elimination. Theor. Comput. Sci. 167(1&2), 95–130 (1996)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Moinard, Y.: Forgetting literals with varying propositional symbols. J. Log. Comput. 17(5), 955–982 (2007)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Weber, A.: Updating propositional formulas. In: Expert Database Conference, pp. 487–500 (1986)Google Scholar
  19. 19.
    Leite, J.: A bird’s-eye view of forgetting in answer-set programming. In: Balduccini, M., Janhunen, T. (eds.) LPNMR 2017. LNCS, vol. 10377, pp. 10–22. Springer, Cham (2017). doi: 10.1007/978-3-319-61660-5_2CrossRefGoogle Scholar
  20. 20.
    Alferes, J.J., Leite, J.A., Pereira, L.M., Przymusinska, H., Przymusinski, T.C.: Dynamic updates of non-monotonic knowledge bases. J. Logic Program. 45(1–3), 43–70 (2000)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Eiter, T., Fink, M., Sabbatini, G., Tompits, H.: On properties of update sequences based on causal rejection. Theory Pract. Logic Program. (TPLP) 2(6), 721–777 (2002)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Sakama, C., Inoue, K.: An abductive framework for computing knowledge base updates. Theory Pract. Logic Program. (TPLP) 3(6), 671–713 (2003)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Slota, M., Leite, J.: Robust equivalence models for semantic updates of answer-set programs. In: Brewka, G., Eiter, T., McIlraith, S.A. (eds.) Proceedings of KR, pp. 158–168. AAAI Press (2012)Google Scholar
  24. 24.
    Slota, M., Leite, J.: A unifying perspective on knowledge updates. In: Cerro, L.F., Herzig, A., Mengin, J. (eds.) JELIA 2012. LNCS, vol. 7519, pp. 372–384. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-33353-8_29CrossRefGoogle Scholar
  25. 25.
    Delgrande, J.P., Schaub, T., Tompits, H., Woltran, S.: A model-theoretic approach to belief change in answer set programming. ACM Trans. Comput. Log. 14(2), 14 (2013)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Slota, M., Leite, J.: The rise and fall of semantic rule updates based on se-models. TPLP 14(6), 869–907 (2014)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Wong, K.S.: Forgetting in logic programs. Ph.D. thesis, The University of New South Wales (2009)Google Scholar
  28. 28.
    Wang, Y., Zhang, Y., Zhou, Y., Zhang, M.: Forgetting in logic programs under strong equivalence. In: Brewka, G., Eiter, T., McIlraith, S.A. (eds.) Proceedings of KR, pp. 643–647. AAAI Press (2012)Google Scholar
  29. 29.
    Wang, Y., Wang, K., Zhang, M.: Forgetting for answer set programs revisited. In: Rossi, F. (ed.) Proceedings of IJCAI. IJCAI/AAAI (2013)Google Scholar
  30. 30.
    Knorr, M., Alferes, J.J.: Preserving strong equivalence while forgetting. In: Fermé, E., Leite, J. (eds.) JELIA 2014. LNCS, vol. 8761, pp. 412–425. Springer, Cham (2014). doi: 10.1007/978-3-319-11558-0_29CrossRefGoogle Scholar
  31. 31.
    Wang, Y., Zhang, Y., Zhou, Y., Zhang, M.: Knowledge forgetting in answer set programming. J. Artif. Intell. Res. (JAIR) 50, 31–70 (2014)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Delgrande, J.P., Wang, K.: A syntax-independent approach to forgetting in disjunctive logic programs. In: Bonet, B., Koenig, S. (eds.) Proceedings of AAAI, pp. 1482–1488. AAAI Press (2015)Google Scholar
  33. 33.
    Zhang, Y., Zhou, Y.: Knowledge forgetting: properties and applications. Artif. Intell. 173(16–17), 1525–1537 (2009)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Gonçalves, R., Knorr, M., Leite, J.: The ultimate guide to forgetting in answer set programming. In: Baral, C., Delgrande, J., Wolter, F. (eds.) Proceedings of KR, pp. 135–144. AAAI Press (2016)Google Scholar
  35. 35.
    Gonçalves, R., Knorr, M., Leite, J.: You can’t always forget what you want: on the limits of forgetting in answer set programming. In: Fox, M.S., Kaminka, G.A. (eds.) Proceedings of ECAI. IOS Press (2016)Google Scholar
  36. 36.
    Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM Trans. Comput. Log. 2(4), 526–541 (2001)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Lifschitz, V., Tang, L.R., Turner, H.: Nested expressions in logic programs. Ann. Math. Artif. Intell. 25(3–4), 369–389 (1999)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Cabalar, P., Ferraris, P.: Propositional theories are strongly equivalent to logic programs. TPLP 7(6), 745–759 (2007)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Gener. Comput. 9(3–4), 365–385 (1991)CrossRefGoogle Scholar
  40. 40.
    Brass, S., Dix, J.: Semantics of (disjunctive) logic programs based on partial evaluation. J. Log. Program. 40(1), 1–46 (1999)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Turner, H.: Strong equivalence made easy: nested expressions and weight constraints. TPLP 3(4–5), 609–622 (2003)MathSciNetzbMATHGoogle Scholar
  42. 42.
    Truszczynski, M.: Reducts of propositional theories, satisfiability relations, and generalizations of semantics of logic programs. Artif. Intell. 174(16–17), 1285–1306 (2010)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Alferes, J.J., Knorr, M., Wang, K.: Forgetting under the well-founded semantics. In: Cabalar, P., Son, T.C. (eds.) LPNMR 2013. LNCS, vol. 8148, pp. 36–41. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40564-8_4CrossRefGoogle Scholar
  44. 44.
    Knorr, M., Alferes, J.J., Hitzler, P.: Local closed world reasoning with description logics under the well-founded semantics. Artif. Intell. 175(9–10), 1528–1554 (2011)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Gonçalves, R., Alferes, J.J.: Parametrized logic programming. In: Janhunen, T., Niemelä, I. (eds.) JELIA 2010. LNCS, vol. 6341, pp. 182–194. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-15675-5_17CrossRefGoogle Scholar
  46. 46.
    Slota, M., Leite, J., Swift, T.: On updates of hybrid knowledge bases composed of ontologies and rules. Artif. Intell. 229, 33–104 (2015)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Gonçalves, R., Knorr, M., Leite, J.: Evolving multi-context systems. In: Schaub, T., Friedrich, G., O’Sullivan, B. (eds.) Proceedings of ECAI, pp. 375–380. IOS Press (2014)Google Scholar
  48. 48.
    Brewka, G., Ellmauthaler, S., Pührer, J.: Multi-context systems for reactive reasoning in dynamic environments. In: Schaub, T., Friedrich, G., O’Sullivan, B. (eds.) Proceedings of ECAI, pp. 159–164. IOS Press (2014)Google Scholar
  49. 49.
    Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., Schneider, M.T.: Potassco: the Potsdam answer set solving collection. AI Commun. 24(2), 107–124 (2011)MathSciNetzbMATHGoogle Scholar
  50. 50.
    Ivanov, V., Knorr, M., Leite, J.: A query tool for \(\cal{EL}\) with non-monotonic rules. In: Alani, H., et al. (eds.) ISWC 2013. LNCS, vol. 8218, pp. 216–231. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-41335-3_14CrossRefGoogle Scholar
  51. 51.
    Costa, N., Knorr, M., Leite, J.: Next step for NoHR: OWL 2 QL. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9366, pp. 569–586. Springer, Cham (2015). doi: 10.1007/978-3-319-25007-6_33CrossRefGoogle Scholar
  52. 52.
    Lopes, C., Knorr, M., Leite, J.: NoHR: integrating XSB Prolog with the OWL 2 profiles and beyond. In: Balduccini, M., Janhunen, T. (eds.) LPNMR 2017. LNCS, vol. 10377, pp. 236–249. Springer, Cham (2017). doi: 10.1007/978-3-319-61660-5_22CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ricardo Gonçalves
    • 1
  • Matthias Knorr
    • 1
    Email author
  • João Leite
    • 1
  1. 1.NOVA LINCS, Departamento de Informática, Faculdade de Ciências e TecnologiaUniversidade Nova de LisboaCaparicaPortugal

Personalised recommendations