On the Properties of Atom Definability and Well-Supportedness in Logic Programming

  • Pedro CabalarEmail author
  • Jorge Fandinno
  • Luis Fariñas
  • David Pearce
  • Agustín Valverde
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10423)


We analyse alternative extensions of stable models for non-disjunctive logic programs with arbitrary Boolean formulas in the body, and examine two semantic properties. The first property, we call atom definability, allows one to replace any expression in rule bodies by an auxiliary atom defined by a single rule. The second property, well-supportedness, was introduced by Fages and dictates that it must be possible to establish a derivation ordering for all true atoms in a stable model so that self-supportedness is not allowed. We start from a generic fixpoint definition for well-supportedness that deals with: (1) a monotonic basis, for which we consider the whole range of intermediate logics; and (2), an assumption function, that determines which type of negated formulas can be added as defaults. Assuming that we take the strongest underlying logic in such a case, we show that only Equilibrium Logic satisfies both atom definability and strict well-suportedness.



We are very thankful to the anonymous reviewers for their helpful comments and suggestions to improve the paper, especially for pointing out example after Theorem 1 which led to a more accurate reformulation.


  1. 1.
    Gelfond, M., Lifschitz, V.: The stable models semantics for logic programming. In: Proceedings of the 5th International Conference on Logic Programming, pp. 1070–1080 (1988)Google Scholar
  2. 2.
    Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Gener. Comput. 9, 365–385 (1991)CrossRefGoogle Scholar
  3. 3.
    Inoue, K., Sakama, C.: Negation as failure in the head. J. Log. Program. 35(1), 39–78 (1998)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Lifschitz, V., Tang, L.R., Turner, H.: Nested expressions in logic programs. Ann. Math. Artif. Intell. 25, 369–389 (1999)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Pearce, D.: A new logical characterisation of stable models and answer sets. In: Dix, J., Pereira, L.M., Przymusinski, T.C. (eds.) NMELP 1996. LNCS, vol. 1216, pp. 57–70. Springer, Heidelberg (1997). doi: 10.1007/BFb0023801CrossRefGoogle Scholar
  6. 6.
    Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM Trans. Comput. Log. 2(4), 526–541 (2001)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Ferraris, P.: Answer sets for propositional theories. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS, vol. 3662, pp. 119–131. Springer, Heidelberg (2005). doi: 10.1007/11546207_10CrossRefGoogle Scholar
  8. 8.
    Faber, W., Leone, N., Pfeifer, G.: Recursive aggregates in disjunctive logic programs: semantics and complexity. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS, vol. 3229, pp. 200–212. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-30227-8_19CrossRefzbMATHGoogle Scholar
  9. 9.
    Truszczyński, M.: Reducts of propositional theories, satisfiability relations, and generalizations of semantics of logic programs. Artif. Intell. 174(16), 1285–1306 (2010)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Shen, Y.D., Wang, K., Eiter, T., Fink, M., Redl, C., Krennwallner, T., Deng, J.: FLP answer set semantics without circular justifications for general logic programs. Artif. Intell. 213, 1–41 (2014)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Fages, F.: Consistency of Clark’s completion and existence of stable models. J. Methods Log. Comput. Sci. 1(1), 51–60 (1994)Google Scholar
  12. 12.
    Calimeri, F., Faber, W., Gebser, M., Ianni, G., Kaminski, R., Krennwallner, T., Leone, N., Ricca, F., Schaub, T.: ASP-Core-2 input language format (2013).
  13. 13.
    Eiter, T., Tompits, H., Woltran, S.: On solution correspondences in answer-set programming. In: Kaelbling, L.P., Saffiotti, A. (eds.) Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence (IJCAI 2005), Edinburgh, Scotland, UK, pp. 97–102. Professional Book Center (2005)Google Scholar
  14. 14.
    Aguado, F., Cabalar, P., Fandinno, J., Pearce, D., Pérez, G., Vidal, C.: Forgetting auxiliary atoms in forks. In: Proceedings of the 10th Workshop on Answer Set Programming and Other Computing Paradigms (ASPOCP 2017) (2017)Google Scholar
  15. 15.
    Clark, K.L.: Negation as failure. In: Gallaire, H., Minker, J. (eds.) Logic and Databases, pp. 293–322. Plenum Press, New York (1978)Google Scholar
  16. 16.
    McDermott, D.V., Doyle, J.: Non-monotonic logic I. Artif. Intell. 13(1–2), 41–72 (1980)CrossRefGoogle Scholar
  17. 17.
    Tasharrofi, S.: A rational extension of stable model semantics to the full propositional language. In: Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence, IJCAI 2013, pp. 1118–1124. AAAI Press (2013)Google Scholar
  18. 18.
    Alviano, M., Faber, W.: Stable model semantics of abstract dialectical frameworks revisited: a logic programming perspective. In: Proceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI 2015), pp. 2684–2690 (2015)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Pedro Cabalar
    • 1
    Email author
  • Jorge Fandinno
    • 1
    • 2
  • Luis Fariñas
    • 2
  • David Pearce
    • 3
  • Agustín Valverde
    • 4
  1. 1.Universidade da CoruñaA CoruñaSpain
  2. 2.University of Toulouse IRIT, CNRSToulouseFrance
  3. 3.Universidad Politécnica de MadridMadridSpain
  4. 4.Universidad de MálagaMálagaSpain

Personalised recommendations