Electricity Rate Planning for the Current Consumer Market Scenario Through Segmentation of Consumption Time Series

  • Alfredo VellidoEmail author
  • David L. García
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10423)


The current European legislation requires households the installation of smart metering systems. These will eventually allow electric utilities to gather richly detailed data of consumption. In this scenario, the implementation of data mining procedures for actionable knowledge extraction could be the key to competitive advantage. These may take the form of market segmentation using clustering techniques for the identification of customer behaviour patterns of electricity consumption that could justify the definition of tailored tariffs. In this brief paper, we show that the combination of a standard clustering algorithm with a similarity measure specifically defined for non-i.i.d. data, namely Dynamic Time Warping, can reveal an actionable segmentation of a real consumer market, combining business criteria and quantitative evaluation.


Time series Dynamic Time Warping x-Means k-Shape Electric utility Load curves Tariff personalization 


  1. 1.
    Orden IET/290/2012, de 16 de febrero, por la que se modifica la Orden ITC/3860/2007, de 28 de diciembre, por la que se revisan las tarifas eléctricas a partir del 1 de enero de 2008 en lo relativo al plan de sustitución de contadores.
  2. 2.
    The European Parliament and The Council of the European Union: Directive 2006/32/EC of the European Parliament and of the Council on Energy End-Use Efficiency and Energy Service and Repealing Council Directive 93/76/EEC (2006)Google Scholar
  3. 3.
    Flath, C., Nicolay, D., Conte, T., van Dinther, C., Filipova-Neumann, L.: Cluster analysis of smart metering data. Bus. Inf. Syst. Eng. 4(1), 31–39 (2012)CrossRefGoogle Scholar
  4. 4.
    Alzate, C., Sinn, M.: Improved electricity load forecasting via kernel spectral clustering of smart meters. In: Proceedings of the IEEE 13th International Conference on Data Mining (ICDM 2013), pp. 943–948. IEEE (2013)Google Scholar
  5. 5.
    Lines, J., Bagnall, A., Caiger-Smith, P., Anderson, S.: Classification of household devices by electricity usage profiles. In: Yin, H., Wang, W., Rayward-Smith, V. (eds.) IDEAL 2011. LNCS, vol. 6936, pp. 403–412. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-23878-9_48CrossRefGoogle Scholar
  6. 6.
    Pelleg, D., Moore, A.: X-means: extending K-means with efficient estimation of the number of clusters. In: Langley, P. (ed.) ICML 2000. Morgan Kaufmann, San Francisco, pp. 727–734 (2000)Google Scholar
  7. 7.
    Paparrizos, J., Gravano, L.: k-Shape: efficient and accurate clustering of time series. SIGMOD Rec. 45(1), 69–76 (2016)CrossRefGoogle Scholar
  8. 8.
    Petitjean, F., Forestier, G., Webb, G.I., Nicholson, A.E., Chen, Y., Keogh, E.: Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowl. Inf. Syst. 47(1), 1–26 (2016)CrossRefGoogle Scholar
  9. 9.
    Senin, P.: Dynamic time warping algorithm review. Technical report, Information and Computer Science Department, University of Hawaii at Manoa Honolulu, USA, pp. 1–23 (2008)Google Scholar
  10. 10.
    Berndt, D.J., Clifford, J.: Using dynamic time warping to find patterns in time series. In: KDD Workshop. vol. 10, no. 16 (1994)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations