Advertisement

Radiosurgery for Arteriovenous Malformations

  • Amparo Wolf
  • Douglas Kondziolka
Chapter

Abstract

Stereotactic radiosurgery (SRS) is an important therapeutic option for the care of patients with an intracranial arteriovenous malformation (AVM). It can achieve complete obliteration of blood flow within the AVM, thereby eliminating the risk of future intracranial hemorrhage. The overall morbidity of SRS in AVMs is relatively low. However, complications can arise subsequent to SRS of AVMs and include most commonly delayed hemorrhage, hemodynamic effects on the regional brain from AVM vessel closure, radiation injury to the adjacent brain, and delayed cyst formation. This chapter reviews the principles of complication avoidance and management in the radiosurgical management of AVMs.

References

  1. 1.
    Starke RM, Kano H, Ding D, et al. Stereotactic radiosurgery for cerebral arteriovenous malformations: evaluation of long-term outcomes in a multicenter cohort. J Neurosurg. 2017;126:1–9.CrossRefGoogle Scholar
  2. 2.
    Schneider BF, Eberhard DA, Steiner LE. Histopathology of arteriovenous malformations after gamma knife radiosurgery. J Neurosurg. 1997;87(3):352–7.CrossRefGoogle Scholar
  3. 3.
    Flickinger J, Kondziolka D, Lunsford L, et al. Development of a model to predict permanent symptomatic postradiosurgery injury for arteriovenous malformation patients. Arteriovenous Malformation Radiosurgery Study Group. Int J Radiat Oncol Biol Phys. 2000;46(5):1143–8.CrossRefGoogle Scholar
  4. 4.
    Maruyama K, Kawahara N, Shin M, et al. The risk of hemorrhage after radiosurgery for cerebral arteriovenous malformations. N Engl J Med. 2005;352(2):146–53.CrossRefGoogle Scholar
  5. 5.
    Yen C-P, Sheehan JP, Schwyzer L, Schlesinger D. Hemorrhage risk of cerebral arteriovenous malformations before and during the latency period after GAMMA knife radiosurgery. Stroke. 2011;42(6):1691–6.CrossRefGoogle Scholar
  6. 6.
    Maruyama K, Koga T, Shin M, Igaki H, Tago M, Saito N. Optimal timing for Gamma Knife surgery after hemorrhage from brain arteriovenous malformations. J Neurosurg. 2008;109(Suppl):73–6.PubMedGoogle Scholar
  7. 7.
    Redekop G, TerBrugge K, Montanera W, Willinsky R. Arterial aneurysms associated with cerebral arteriovenous malformations: classification, incidence, and risk of hemorrhage. J Neurosurg. 1998;89(4):539–46.CrossRefPubMedCentralGoogle Scholar
  8. 8.
    Brown RD, Wiebers DO, Forbes GS. Unruptured intracranial aneurysms and arteriovenous malformations: frequency of intracranial hemorrhage and relationship of lesions. J Neurosurg. 1990;73(6):859–63.CrossRefGoogle Scholar
  9. 9.
    Kano H, Lunsford LD, Flickinger JC, et al. Stereotactic radiosurgery for arteriovenous malformations, part 1: management of Spetzler-Martin Grade I and II arteriovenous malformations. J Neurosurg. 2012;116(1):11–20.CrossRefPubMedCentralGoogle Scholar
  10. 10.
    Karlsson B, Lax I, Soderman M. Risk for hemorrhage during the 2-year latency period following gamma knife radiosurgery for arteriovenous malformations. Int J Radiat Oncol Biol Phys. 2001;49(4):1045–51.CrossRefGoogle Scholar
  11. 11.
    Shin M, Maruyama K, Kurita H, et al. Analysis of nidus obliteration rates after gamma knife surgery for arteriovenous malformations based on long-term follow-up data: the University of Tokyo experience. J Neurosurg. 2004;101(1):18–24.CrossRefGoogle Scholar
  12. 12.
    Inoue HK, Ohye C. Hemorrhage risks and obliteration rates of arteriovenous malformations after gamma knife radiosurgery. J Neurosurg. 2002;97(5 Suppl):474–6.PubMedGoogle Scholar
  13. 13.
    van Beijnum J, van der Worp HB, Buis DR, et al. Treatment of brain arteriovenous malformations: a systematic review and meta-analysis. JAMA. 2011;306(18):2011–9.CrossRefGoogle Scholar
  14. 14.
    Pollock BE, Link MJ, Stafford SL, Garces YI, Foote RL. Stereotactic radiosurgery for arteriovenous malformations: the effect of treatment period on patient outcomes. Neurosurgery. 2016;78(4):499–509.CrossRefGoogle Scholar
  15. 15.
    Celix JM, Douglas JG, Haynor D, Goodkin R. Thrombosis and hemorrhage in the acute period following Gamma Knife surgery for arteriovenous malformation. Case report. J Neurosurg. 2009;111(1):124–31.CrossRefGoogle Scholar
  16. 16.
    Pollock BE. Occlusive hyperemia: a radiosurgical phenomenon? Neurosurgery. 2000;47(5):1178–82. Discussion 1182–1184.CrossRefGoogle Scholar
  17. 17.
    Grady C, Tanweer O, Zagzag D, Jafar JJ, Huang PP, Kondziolka D. Delayed hemorrhage from the tissue of an occluded arteriovenous malformation after stereotactic radiosurgery: report of 3 cases. J Neurosurg. 2017;126:1–6.CrossRefGoogle Scholar
  18. 18.
    Yamamoto M, Jimbo M, Hara M, Saito I, Mori K. Gamma knife radiosurgery for arteriovenous malformations: long-term follow-up results focusing on complications occurring more than 5 years after irradiation. Neurosurgery. 1996;38(5):906–14.CrossRefGoogle Scholar
  19. 19.
    Malikova H, Koubska E, Vojtech Z, et al. Late morphological changes after radiosurgery of brain arteriovenous malformations: an MRI study. Acta Neurochir. 2016;158:1683–90.CrossRefGoogle Scholar
  20. 20.
    Kihlström L, Guo WY, Karlsson B, Lindquist C, Lindqvist M. Magnetic resonance imaging of obliterated arteriovenous malformations up to 23 years after radiosurgery. J Neurosurg. 1997;86(4):589–93.CrossRefPubMedCentralGoogle Scholar
  21. 21.
    Flickinger J, Kondziolka D, Pollock B, Maitz A, Lunsford L. Complications from arteriovenous malformation radiosurgery: multivariate analysis and risk modeling. Int J Radiat Oncol Biol Phys. 1997;38(3):485–90.CrossRefPubMedCentralGoogle Scholar
  22. 22.
    Ganz JC, Reda WA, Abdelkarim K. Adverse radiation effects after Gamma Knife surgery in relation to dose and volume. Acta Neurochir. 2009;151(1):9–19.CrossRefPubMedCentralGoogle Scholar
  23. 23.
    Yen C-P, Matsumoto JA, Wintermark M, et al. Radiation-induced imaging changes following Gamma Knife surgery for cerebral arteriovenous malformations. J Neurosurg. 2013;118(1):63–73.CrossRefPubMedCentralGoogle Scholar
  24. 24.
    Han JH, Kim DG, Chung H-T, et al. Clinical and neuroimaging outcome of cerebral arteriovenous malformations after Gamma Knife surgery: analysis of the radiation injury rate depending on the arteriovenous malformation volume. J Neurosurg. 2008;109(2):191–8.CrossRefPubMedCentralGoogle Scholar
  25. 25.
    Yen C-P, Khaled MA, Schwyzer L, Vorsic M, Dumont AS, Steiner L. Early draining vein occlusion after gamma knife surgery for arteriovenous malformations. Neurosurgery. 2010;67(5):1293–302. Discussion 1302.CrossRefPubMedCentralGoogle Scholar
  26. 26.
    van den Berg R, Buis DR, Lagerwaard FJ, Lycklama à Nijeholt GJ, Vandertop WP. Extensive white matter changes after stereotactic radiosurgery for brain arteriovenous malformations: a prognostic sign for obliteration? Neurosurgery. 2008;63(6):1064–9. Discussion 1069–1070.CrossRefPubMedCentralGoogle Scholar
  27. 27.
    Foroughi M, Kemeny AA, Lehecka M, et al. Operative intervention for delayed symptomatic radionecrotic masses developing following stereotactic radiosurgery for cerebral arteriovenous malformations—case analysis and literature review. Acta Neurochir. 2010;152(5):803–15.CrossRefPubMedCentralGoogle Scholar
  28. 28.
    Matsuo T, Kamada K, Izumo T, Hayashi N, Nagata I. Cyst formation after linac-based radiosurgery for arteriovenous malformation: examination of predictive factors using magnetic resonance imaging. Clin Neurol Neurosurg. 2014;121:10–6.CrossRefPubMedCentralGoogle Scholar
  29. 29.
    Ding D, Yen C-P, Starke RM, Xu Z, Sheehan JP. Radiosurgery for ruptured intracranial arteriovenous malformations. J Neurosurg. 2014;121(2):470–81.CrossRefPubMedCentralGoogle Scholar
  30. 30.
    Pan H-C, Sheehan J, Stroila M, Steiner M, Steiner L. Late cyst formation following gamma knife surgery of arteriovenous malformations. J Neurosurg. 2005;102(Suppl):124–7.CrossRefGoogle Scholar
  31. 31.
    Izawa M, Hayashi M, Chernov M, et al. Long-term complications after gamma knife surgery for arteriovenous malformations. J Neurosurg. 2005;102(Suppl):34–7.CrossRefGoogle Scholar
  32. 32.
    Shuto T, Yagishita S, Matsunaga S. Pathological characteristics of cyst formation following gamma knife surgery for arteriovenous malformation. Acta Neurochir. 2015;157(2):293–8.CrossRefGoogle Scholar
  33. 33.
    Williamson R, Kondziolka D, Kanaan H, Lunsford LD, Flickinger JC. Adverse radiation effects after radiosurgery may benefit from oral vitamin E and pentoxifylline therapy: a pilot study. Stereotact Funct Neurosurg. 2008;86(6):359–66.CrossRefGoogle Scholar
  34. 34.
    Boothe D, Young R, Yamada Y, Prager A, Chan T, Beal K. Bevacizumab as a treatment for radiation necrosis of brain metastases post stereotactic radiosurgery. Neuro-Oncology. 2013;15(9):1257–63.CrossRefPubMedCentralGoogle Scholar
  35. 35.
    Sadraei NH, Dahiya S, Chao ST, et al. Treatment of cerebral radiation necrosis with bevacizumab: the Cleveland clinic experience. Am J Clin Oncol. 2015;38(3):304–10.CrossRefGoogle Scholar
  36. 36.
    Levin V, Bidaut L, Hou P, et al. Randomized double-blind placebo-controlled trial of bevacizumab therapy for radiation necrosis of the central nervous system. Int J Radiat Oncol Biol Phys. 2011;79(5):1487.CrossRefPubMedCentralGoogle Scholar
  37. 37.
    Williams BJ, Park DM, Sheehan JP. Bevacizumab used for the treatment of severe, refractory perilesional edema due to an arteriovenous malformation treated with stereotactic radiosurgery. J Neurosurg. 2012;116(5):972–7.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of NeurosurgeryNew York University, NYU Langone Medical CenterNew YorkUSA

Personalised recommendations