Advertisement

Radiation Physics: Stereotactic Radiosurgery for Arteriovenous Malformations

  • Krishna Amuluru
  • Christopher G. Filippi
Chapter

Abstract

Recent advances in stereotactic radiosurgery have allowed new treatment strategies for cerebral arteriovenous malformations that are not amenable to surgical resection because of the morbidity related to their deep or critical brain locations. Stereotactic radiosurgery is advantageous due to its noninvasive nature and the minimal risk of acute complications. The primary disadvantage of radiosurgery is that cure is not immediate and a latent period exists during which the risk of hemorrhage remains. Rates of successful obliteration and complications are primarily dependent on the location and volume of the lesion treated and radiation dose. Complications of stereotactic radiosurgery include hemorrhage during the latent period, radiation necrosis, and treatment failure. The avoidance and management of stereotactic radiosurgery complications require an in-depth knowledge of the underlying radiation physics, the indications for treatment, and the predictors for both success and failure.

References

  1. 1.
    See AP, Raza S, Tamargo RJ, Lim M. Stereotactic radiosurgery of cranial arteriovenous malformations and dural arteriovenous fistulas. Neurosurg Clin N Am. 2012;23:133–46.CrossRefPubMedGoogle Scholar
  2. 2.
    Barrow DL, Reisner A. Natural history of intracranial aneurysms and vascular malformations. Clin Neurosurg. 1993;40:3–39.PubMedGoogle Scholar
  3. 3.
    Mast H, Young WL, Koennecke HC, Sciacca RR, Osipov A, Pile-Spellman J, et al. Risk of spontaneous haemorrhage after diagnosis of cerebral arteriovenous malformation. Lancet. 1997;350:1065–8.CrossRefPubMedGoogle Scholar
  4. 4.
    Ondra SL, Troupp H, George ED, Schwab K. The natural history of symptomatic arteriovenous malformations of the brain: a 24-year follow-up assessment. J Neurosurg. 1990;73:387–91.CrossRefPubMedGoogle Scholar
  5. 5.
    Plasencia AR, Santillan A. Embolization and radiosurgery for arteriovenous malformations. Surg Neurol Int. 2012;3:S90–s104.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Rubin BA, Brunswick A, Riina H, Kondziolka D. Advances in radiosurgery for arteriovenous malformations of the brain. Neurosurgery. 2014;74(Suppl 1):S50–9.CrossRefPubMedGoogle Scholar
  7. 7.
    Friedman WA. Stereotactic radiosurgery of intracranial arteriovenous malformations. Neurosurg Clin N Am. 2013;24:561–74.CrossRefPubMedGoogle Scholar
  8. 8.
    Leksell L. The stereotaxic method and radiosurgery of the brain. Acta Chir Scand. 1951;102:316–9.PubMedGoogle Scholar
  9. 9.
    Wowra B, Muacevic A, Tonn JC, Schoenberg SO, Reiser M, Herrmann KA. Obliteration dynamics in cerebral arteriovenous malformations after cyberknife radiosurgery: quantification with sequential nidus volumetry and 3-tesla 3-dimensional time-of-flight magnetic resonance angiography. Neurosurgery. 2009;64:A102–9.CrossRefPubMedGoogle Scholar
  10. 10.
    Pollock BE, Flickinger JC, Lunsford LD, Bissonette DJ, Kondziolka D. Factors that predict the bleeding risk of cerebral arteriovenous malformations. Stroke. 1996;27:1–6.CrossRefPubMedGoogle Scholar
  11. 11.
    Betti O, Derechinsky V. Multiple-beam stereotaxic irradiation. Neurochirurgie. 1983;29:295–8.PubMedGoogle Scholar
  12. 12.
    Orio P, Stelzer KJ, Goodkin R, Douglas JG. Treatment of arteriovenous malformations with linear accelerator-based radiosurgery compared with gamma knife surgery. J Neurosurg. 2006;105(Suppl):58–63.PubMedGoogle Scholar
  13. 13.
    Attia M, Menhel J, Alezra D, Pffefer R, Spiegelmann R. Radiosurgery—LINAC or gamma knife: 20 years of controversy revisited. Isr Med Assoc J. 2005;7:583–8.PubMedGoogle Scholar
  14. 14.
    Bednarz G, Downes B, Werner-Wasik M, Rosenwasser RH. Combining stereotactic angiography and 3D time-of-flight magnetic resonance angiography in treatment planning for arteriovenous malformation radiosurgery. Int J Radiat Oncol Biol Phys. 2000;46:1149–54.CrossRefPubMedGoogle Scholar
  15. 15.
    Zhang XQ, Shirato H, Aoyama H, Ushikoshi S, Nishioka T, Zhang DZ, et al. Clinical significance of 3D reconstruction of arteriovenous malformation using digital subtraction angiography and its modification with CT information in stereotactic radiosurgery. Int J Radiat Oncol Biol Phys. 2003;57:1392–9.CrossRefPubMedGoogle Scholar
  16. 16.
    Flickinger JC, Kano H, Niranjan A, Kondziolka D, Lunsford LD. Dose selection in stereotactic radiosurgery. Prog Neurol Surg. 2013;27:49–57.PubMedGoogle Scholar
  17. 17.
    Wang M, Ma H, Wang X, Guo Y, Xia X, Xia H, et al. Integration of BOLD-fMRI and DTI into radiation treatment planning for high-grade gliomas located near the primary motor cortexes and corticospinal tracts. Radiat Oncol. 2015;10:64.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Pantelis E, Papadakis N, Verigos K, Stathochristopoulou I, Antypas C, Lekas L, et al. Integration of functional MRI and white matter tractography in stereotactic radiosurgery clinical practice. Int J Radiat Oncol Biol Phys. 2010;78:257–67.CrossRefPubMedGoogle Scholar
  19. 19.
    Maruyama K, Kamada K, Shin M, Itoh D, Masutani Y, Ino K, et al. Optic radiation tractography integrated into simulated treatment planning for gamma knife surgery. J Neurosurg. 2007;107:721–6.CrossRefPubMedGoogle Scholar
  20. 20.
    Stancanello J, Cavedon C, Francescon P, Causin F, Avanzo M, Colombo F, et al. BOLD fMRI integration into radiosurgery treatment planning of cerebral vascular malformations. Med Phys. 2007;34:1176–84.CrossRefPubMedGoogle Scholar
  21. 21.
    Maruyama K, Kamada K, Ota T, Koga T, Itoh D, Ino K, et al. Tolerance of pyramidal tract to gamma knife radiosurgery based on diffusion-tensor tractography. Int J Radiat Oncol Biol Phys. 2008;70:1330–5.CrossRefPubMedGoogle Scholar
  22. 22.
    Spetzler RF, Martin NA. A proposed grading system for arteriovenous malformations. J Neurosurg. 1986;65:476–83.CrossRefPubMedGoogle Scholar
  23. 23.
    Wegner RE, Oysul K, Pollock BE, Sirin S, Kondziolka D, Niranjan A, et al. A modified radiosurgery-based arteriovenous malformation grading scale and its correlation with outcomes. Int J Radiat Oncol Biol Phys. 2011;79:1147–50.CrossRefPubMedGoogle Scholar
  24. 24.
    Pollock BE, Flickinger JC, Lunsford LD, Maitz A, Kondziolka D. Factors associated with successful arteriovenous malformation radiosurgery. Neurosurgery. 1998;42:1239–44. Discussion 1244–1237.CrossRefPubMedGoogle Scholar
  25. 25.
    Pollock BE, Flickinger JC. A proposed radiosurgery-based grading system for arteriovenous malformations. J Neurosurg. 2002;96:79–85.CrossRefPubMedGoogle Scholar
  26. 26.
    Pollock BE, Flickinger JC. Modification of the radiosurgery-based arteriovenous malformation grading system. Neurosurgery. 2008;63:239–43. Discussion 243.CrossRefPubMedGoogle Scholar
  27. 27.
    Zabel-du Bois A, Milker-Zabel S, Huber P, Schlegel W, Debus J. Pediatric cerebral arteriovenous malformations: the role of stereotactic LINAC-based radiosurgery. Int J Radiat Oncol Biol Phys. 2006;65:1206–11.CrossRefPubMedGoogle Scholar
  28. 28.
    Andrade-Souza YM, Zadeh G, Scora D, Tsao MN, Schwartz ML. Radiosurgery for basal ganglia, internal capsule, and thalamus arteriovenous malformation: clinical outcome. Neurosurgery. 2005;56:56–63. Discussion 63–54.CrossRefPubMedGoogle Scholar
  29. 29.
    Zabel-du Bois A, Milker-Zabel S, Huber P, Schlegel W, Debus J. Stereotactic LINAC-based radiosurgery in the treatment of cerebral arteriovenous malformations located deep, involving corpus callosum, motor cortex, or brainstem. Int J Radiat Oncol Biol Phys. 2006;64:1044–8.CrossRefPubMedGoogle Scholar
  30. 30.
    Kano H, Lunsford LD, Flickinger JC, Yang HC, Flannery TJ, Awan NR, et al. Stereotactic radiosurgery for arteriovenous malformations, part 1: management of Spetzler-Martin Grade I and II arteriovenous malformations. J Neurosurg. 2012;116:11–20.CrossRefPubMedGoogle Scholar
  31. 31.
    Flickinger JC, Pollock BE, Kondziolka D, Lunsford LD. A dose-response analysis of arteriovenous malformation obliteration after radiosurgery. Int J Radiat Oncol Biol Phys. 1996;36:873–9.CrossRefPubMedGoogle Scholar
  32. 32.
    Karlsson B, Lax I, Soderman M. Factors influencing the risk for complications following gamma knife radiosurgery of cerebral arteriovenous malformations. Radiother Oncol. 1997;43:275–80.CrossRefPubMedGoogle Scholar
  33. 33.
    Zipfel GJ, Bradshaw P, Bova FJ, Friedman WA. Do the morphological characteristics of arteriovenous malformations affect the results of radiosurgery? J Neurosurg. 2004;101:393–401.CrossRefPubMedGoogle Scholar
  34. 34.
    Sun DQ, Carson KA, Raza SM, Batra S, Kleinberg LR, Lim M, et al. The radiosurgical treatment of arteriovenous malformations: obliteration, morbidities, and performance status. Int J Radiat Oncol Biol Phys. 2011;80:354–61.CrossRefPubMedGoogle Scholar
  35. 35.
    Friedman WA, Bova FJ, Bollampally S, Bradshaw P. Analysis of factors predictive of success or complications in arteriovenous malformation radiosurgery. Neurosurgery. 2003;52:296–307. Discussion 307–298.CrossRefPubMedGoogle Scholar
  36. 36.
    Buis DR, Lagerwaard FJ, Barkhof F, Dirven CM, Lycklama GJ, Meijer OW, et al. Stereotactic radiosurgery for brain AVMs: role of interobserver variation in target definition on digital subtraction angiography. Int J Radiat Oncol Biol Phys. 2005;62:246–52.CrossRefPubMedGoogle Scholar
  37. 37.
    Ellis TL, Friedman WA, Bova FJ, Kubilis PS, Buatti JM. Analysis of treatment failure after radiosurgery for arteriovenous malformations. J Neurosurg. 1998;89:104–10.CrossRefPubMedGoogle Scholar
  38. 38.
    Kwon Y, Jeon SR, Kim JH, Lee JK, Ra DS, Lee DJ, et al. Analysis of the causes of treatment failure in gamma knife radiosurgery for intracranial arteriovenous malformations. J Neurosurg. 2000;93(Suppl 3):104–6.PubMedGoogle Scholar
  39. 39.
    Friedman WA, Blatt DL, Bova FJ, Buatti JM, Mendenhall WM, Kubilis PS. The risk of hemorrhage after radiosurgery for arteriovenous malformations. J Neurosurg. 1996;84:912–9.CrossRefPubMedGoogle Scholar
  40. 40.
    Colombo F, Pozza F, Chierego G, Casentini L, De Luca G, Francescon P. Linear accelerator radiosurgery of cerebral arteriovenous malformations: an update. Neurosurgery. 1994;34:14–20. Discussion 20–11.PubMedGoogle Scholar
  41. 41.
    Kim HY, Chang WS, Kim DJ, Lee JW, Chang JW, Kim DI, et al. Gamma knife surgery for large cerebral arteriovenous malformations. J Neurosurg. 2010;113(Suppl):2–8.PubMedGoogle Scholar
  42. 42.
    Maruyama K, Kawahara N, Shin M, Tago M, Kishimoto J, Kurita H, et al. The risk of hemorrhage after radiosurgery for cerebral arteriovenous malformations. N Engl J Med. 2005;352:146–53.CrossRefPubMedGoogle Scholar
  43. 43.
    Karlsson B, Lindquist C, Steiner L. Effect of gamma knife surgery on the risk of rupture prior to AVM obliteration. Minim Invasive Neurosurg. 1996;39:21–7.CrossRefPubMedGoogle Scholar
  44. 44.
    Mitsuya K, Nakasu Y, Horiguchi S, Harada H, Nishimura T, Bando E, et al. Perfusion weighted magnetic resonance imaging to distinguish the recurrence of metastatic brain tumors from radiation necrosis after stereotactic radiosurgery. J Neuro-Oncol. 2010;99:81–8.CrossRefGoogle Scholar
  45. 45.
    Chao ST, Ahluwalia MS, Barnett GH, Stevens GH, Murphy ES, Stockham AL, et al. Challenges with the diagnosis and treatment of cerebral radiation necrosis. Int J Radiat Oncol Biol Phys. 2013;87:449–57.CrossRefPubMedGoogle Scholar
  46. 46.
    Flickinger JC, Kondziolka D, Lunsford LD, Kassam A, Phuong LK, Liscak R, et al. Development of a model to predict permanent symptomatic postradiosurgery injury for arteriovenous malformation patients. Arteriovenous malformation radiosurgery study group. Int J Radiat Oncol Biol Phys. 2000;46:1143–8.CrossRefPubMedGoogle Scholar
  47. 47.
    Flickinger JC, Kondziolka D, Pollock BE, Maitz AH, Lunsford LD. Complications from arteriovenous malformation radiosurgery: multivariate analysis and risk modeling. Int J Radiat Oncol Biol Phys. 1997;38:485–90.CrossRefPubMedGoogle Scholar
  48. 48.
    Flickinger JC, Kondziolka D, Maitz AH, Lunsford LD. Analysis of neurological sequelae from radiosurgery of arteriovenous malformations: how location affects outcome. Int J Radiat Oncol Biol Phys. 1998;40:273–8.CrossRefPubMedGoogle Scholar
  49. 49.
    Izawa M, Hayashi M, Chernov M, Nakaya K, Ochiai T, Murata N, et al. Long-term complications after gamma knife surgery for arteriovenous malformations. J Neurosurg. 2005;102(Suppl):34–7.CrossRefPubMedGoogle Scholar
  50. 50.
    Yamamoto M, Hara M, Ide M, Ono Y, Jimbo M, Saito I. Radiation-related adverse effects observed on neuro-imaging several years after radiosurgery for cerebral arteriovenous malformations. Surg Neurol. 1998;49:385–97. Discussion 397–388.CrossRefPubMedGoogle Scholar
  51. 51.
    Lindqvist M, Karlsson B, Guo WY, Kihlstrom L, Lippitz B, Yamamoto M. Angiographic long-term follow-up data for arteriovenous malformations previously proven to be obliterated after gamma knife radiosurgery. Neurosurgery. 2000;46:803–8. Discussion 809–810.PubMedGoogle Scholar
  52. 52.
    Yamamoto Y, Coffey RJ, Nichols DA, Shaw EG. Interim report on the radiosurgical treatment of cerebral arteriovenous malformations. The influence of size, dose, time, and technical factors on obliteration rate. J Neurosurg. 1995;83:832–7.CrossRefPubMedGoogle Scholar
  53. 53.
    Kihlstrom L, Guo WY, Karlsson B, Lindquist C, Lindqvist M. Magnetic resonance imaging of obliterated arteriovenous malformations up to 23 years after radiosurgery. J Neurosurg. 1997;86:589–93.CrossRefPubMedGoogle Scholar
  54. 54.
    Foote KD, Friedman WA, Ellis TL, Bova FJ, Buatti JM, Meeks SL. Salvage retreatment after failure of radiosurgery in patients with arteriovenous malformations. J Neurosurg. 2003;98:337–41.CrossRefPubMedGoogle Scholar
  55. 55.
    Hauswald H, Milker-Zabel S, Sterzing F, Schlegel W, Debus J, Zabel-du BA. Repeated LINAC-based radiosurgery in high-grade cerebral arteriovenous-malformations (AVM) Spetzler-Martin grade III to IV previously treated with radiosurgery. Radiother Oncol. 2011;98:217–22.CrossRefPubMedGoogle Scholar
  56. 56.
    Maesawa S, Flickinger JC, Kondziolka D, Lunsford LD. Repeated radiosurgery for incompletely obliterated arteriovenous malformations. J Neurosurg. 2000;92:961–70.CrossRefPubMedGoogle Scholar
  57. 57.
    Levin VA, Bidaut L, Hou P, Kumar AJ, Wefel JS, Bekele BN, et al. Randomized double-blind placebo-controlled trial of bevacizumab therapy for radiation necrosis of the central nervous system. Int J Radiat Oncol Biol Phys. 2011;79:1487–95.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Sadraei NH, Dahiya S, Chao ST, Murphy ES, Osei-Boateng K, Xie H, et al. Treatment of cerebral radiation necrosis with bevacizumab: the cleveland clinic experience. Am J Clin Oncol. 2015;38:304–10.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Interventional NeuroradiologyUniversity of Pittsburgh Medical Center - HamotErieUSA
  2. 2.Department of RadiologyHofstra Northwell School of MedicineManhassetUSA
  3. 3.Department of NeurologyUniversity of Vermont School of MedicineBurlingtonUSA

Personalised recommendations