Advertisement

The Knowledge Domain of Affective Computing: A Scientometric Review

  • Maria Helena Pestana
  • Wan-Chen Wang
  • Luiz Moutinho
Chapter

Abstract

Purpose—The aim of this study is to investigate the bibliographical information about affective computing identifying advances, trends, major papers, connections, and areas of research.

Design/methodology/approach—A scientometric analysis was applied using CiteSpace, of 5,078 references about affective computing imported from the Web-of-Science Core Collection, covering the period of 1991–2016.

Findings—The most cited, creative burst and central references are displayed by areas of research, using metrics and throughout-time visualization.

Research limitations/implications—Interpretation is limited to references retrieved from the Web-of-Science Core Collection in the fields of management, psychology, and marketing. Nevertheless, the richness of bibliographical data obtained, largely compensates this limitation.

Practical implications—The study provides managers with a sound body of knowledge on affective computing, with which they can capture general public emotion in respect of their products and services, and on which they can base their marketing intelligence gathering and strategic planning.

Originality/value—The chapter provides new opportunities for companies to enhance their capabilities in terms of customer relationships.

Keywords

Affective computing Knowledge domain Scientometric CiteSpace 

References

  1. Bagozzi, R. P., Gopinoth, M., & Nyer, P. U. (1999). The Role of Emotions in Marketing. Journal of the Academy of Marketing Science, 27(2), 184–206.CrossRefGoogle Scholar
  2. Bakhtiyari, K., & Husain, H. (2014). Fuzzy Model of Dominance Emotions in Affective Computing. Neural Computing & Applications, 25 (6th ed.), 1467–1477.Google Scholar
  3. Calvo, R. A., & D’Mello, S. K. (2010). Affect Detection: An Interdisciplinary Review of Models, Methods, and Their Applications. IEEE Transactıons on Affective Computing, 1(1), 18–37.CrossRefGoogle Scholar
  4. Cambria, E. (2016). Affective Computing and Sentiment Analysis. IEEE Intelligent Systems, 31(2), 1541–1672.Google Scholar
  5. Cambria, E., et al. (2013). New Avenues in Opinion Mining and Sentiment Analysis. IEEE Intelligent Systems, 28(2), 15–21.CrossRefGoogle Scholar
  6. Chang, C. C., & Lin, C. J. (2011). LIBSVM: A Library for Support Vector Machines. ACM Transactions on Intelligent Systems and Technology, 2(3), Article 27.Google Scholar
  7. Chen, C. (1999). Visualizing Semantic Spaces and Author Cocitation Net-Works in Digital Libraries. Information Processing & Management, 35(3), 401–420.CrossRefGoogle Scholar
  8. Chen, C. (2013). The Structure and Dynamics of Scientific Knowledge. In Mapping Scientific Frontiers (pp. 163–199). London: Springer.CrossRefGoogle Scholar
  9. Cowie, R., Douglas-Cowie, E., Tsapatsoulis, N., Votsis, G., Kollias, S., Fellenz, W., & Taylor, J. G. (2001, January). Emotion Recognition in Human-Computer Interaction. IEEE Signal Processing Magazine, 18, 32–80.Google Scholar
  10. D’Mello, S., & Graesser, A. (2010). Multimodal Semi-automated Affect Detection from Conversational Cues, Gross Body Language, and Facial Features. User Modelling and User-Adapted Interaction, 20(2), 147–187.CrossRefGoogle Scholar
  11. D’Mello, S., & Kory, J. (2012, October 22–26). Consistent but Modest: A Meta-Analysis on Unimodal and Multimodal Affect Detection Accuracies from 30 Studies. ICMI ’12, Santa Monica, California.Google Scholar
  12. Eid, M. A., & Osman, H. A. (2016). Affective Haptics: Current Research and Future Directions. IEEE Access. https://doi.org/10.1109/ACCESS.2015.2497316.
  13. Frijda, N. (2007). The Laws of Emotion. London: Routledge.Google Scholar
  14. Fu, Y., Leong, H. V., Ngai, G., Huang, M. X., & Chan, S. C. F. (2014, July 21–25). Physiological Mouse: Towards an Emotion-Aware Mouse. In C. K. Chang, Y. Gao, A. Hurson, et al. (Eds.), 38th Annual IEEE International Computer Software and Applications Conference (COMPSAC) (pp. 258–263). Local: Vasteras, SWEDEN.Google Scholar
  15. Gunes, H., & Schuller, B. (2012). Categorical and Dimensional Affect Analysis in Continuous Input: Current Trends and Future Directions. Image and Vision Computing, 31(2), 120–136.CrossRefGoogle Scholar
  16. Hu, C., & Racherla, P. (2008). Visual Representation of Knowledge Networks: A Social Network Analysis of Hospitality Research Domain. International Journal of Hospitality Management, 27, 302–312.CrossRefGoogle Scholar
  17. Kapoor, A., Burlesonc, W., & Picard, R. W. (2007). Automatic Prediction of Frustration. International Journal of Human-Computer Studies, 65, 724–736.CrossRefGoogle Scholar
  18. Kim, J., & Elizabeth, A. (2008). Emotion Recognition Based on Physiological Changes in Music Listening. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(2), 2067–2083.Google Scholar
  19. Koelstra, S., Soleymani, M., Yardani, A., & Nijholt, A. (2012). DEAP: A Database for Emotion Analysis Using Physiological Signals. IEEE Transactions on Affective Computing, 3(1), 18–31.CrossRefGoogle Scholar
  20. Lang, P. J. (2010). Emotion and Motivation: Toward Consensus Definitions and a Common Research Purpose. Emotion Review, 2(3), 229–233.CrossRefGoogle Scholar
  21. Lee, N., Broderick, A. J., & Chamberlain, L. (2007). What is ‘Neuromarketing’? A Discussion and Agenda for Future Research. International Journal of Psychophysiology, 63, 199–204.CrossRefGoogle Scholar
  22. Lee, Y. C., Chen, C., & Tsai, X. T. (2016). Visualizing the Knowledge Domain of Nanoparticle Drug Delivery Technologies: A Scientometric Review. Applied Sciences, 6(1), 11. https://doi.org/10.3390/app6010011.CrossRefGoogle Scholar
  23. Liu, B. (2012). Sentiment Analysis and Opinion Mining. San Rafael: Morgan and Claypool.Google Scholar
  24. Pang, B., & Lee, L. (2008). Opinion Mining and Sentiment Analysis. Foundations and Trends in Information Retrieval, 2(1–2), 1–135.CrossRefGoogle Scholar
  25. Pantic, M., & Rothkrantz, L. J. M. (2003). Towards Emotion Recognition in Human Computer Interaction. IEEE, Proceedings of the IEEE, 91(9), 1370–1390.CrossRefGoogle Scholar
  26. Pfeifer, R., & Scheier, C. (1999). Understanding Intelligence. Cambridge, MA: MIT Press.Google Scholar
  27. Picard, R. (1997). Affective Computing. Cambridge: The MIT Press.CrossRefGoogle Scholar
  28. Picard, R. W. (2003). Affective Computing: Challenges. International Journal of Human-Computer Studies, 59, 55–64.CrossRefGoogle Scholar
  29. Picard, R. W., Vyzas, E., & Healey, J. (2001). Toward Machine Emotional Intelligence: Analysis of Affective Physiological State. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(10), 1175–1191.CrossRefGoogle Scholar
  30. Rukavina, S., Sascha, G., Holder, H., Jun-Weng, T., Walter, S., & Traue, H. (2016). Affective Computing and the Impact of Gender and Age. PLoS One, 11, e0150584.CrossRefGoogle Scholar
  31. Schuller, B., Vlasenko, R., Eyben, F., et al. (2010). Cross-Corpus Acoustic Emotion Recognition: Variances and Strategies. IEEE Transactions on Affective Computing, 1(2), 119–131. https://doi.org/10.1109/T-AFFC.2010.8.CrossRefGoogle Scholar
  32. Schuller, B., Batliner, A., Steidl, S., & Seppi, D. (2011). Recognising Realistic Emotions and Affect in Speech: State of the Art and Lessons Learnt from the First Challenge. Speech Communication, 53(9), 1062–1087.CrossRefGoogle Scholar
  33. Teixeira, T., Wedel, M., & Pieters, R. (2012). Emotion-Induced Engagement in Internet Video Advertisements. Journal of Marketing Research, 49(2), 144–159.CrossRefGoogle Scholar
  34. Wang, W. C., Chien, C. S., & Moutinho, L. (2015). Do You Really Feel Happy? Some Implications of Voice Emotion Response in Mandarin Chinese. Marketing Letters, 26(3), 391–409.CrossRefGoogle Scholar
  35. Zeng, Z. H., Riisman, G. I., & Huang, T. S. (2009). A Survey of Affect Recognition Methods: Audio, Visual, and Spontaneous Expressions. IEEE Transactıons on Pattern Analysis and Machine Intelligence, 31(1), 39–58.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Maria Helena Pestana
    • 1
  • Wan-Chen Wang
    • 2
  • Luiz Moutinho
    • 3
    • 4
  1. 1.ISCTE_IULLisbonPortugal
  2. 2.Feng Chia UniversityTaiwanRepublic of China
  3. 3.University of SuffolkSuffolk, EnglandUK
  4. 4.The University of the South PacificSuvaFiji

Personalised recommendations