Advertisement

Measuring and Imaging Nanomechanical Motion with Laser Light

  • Andreas Barg
  • Yeghishe Tsaturyan
  • Erik Belhage
  • William H. P. Nielsen
  • Christoffer B. Møller
  • Albert SchliesserEmail author
Chapter

Abstract

We discuss several techniques based on laser-driven interferometers and cavities to measure nanomechanical motion. With increasing complexity, they achieve sensitivities reaching from thermal displacement amplitudes, typically at the picometer scale, all the way to the quantum regime, in which radiation pressure induces motion correlated with the quantum fluctuations of the probing light. We show that an imaging modality is readily provided by scanning laser interferometry, reaching a sensitivity on the order of \( 10\kern0.166667em \mathrm{fm}/{\mathrm{Hz}}^{1/2} \), and a transverse resolution down to \( 2\kern0.166667em \upmu \mathrm{m} \). We compare this approach with a less versatile, but faster (single-shot) dark-field imaging technique.

Notes

Acknowledgements

We would like to acknowledge our (former and present) colleagues Georg Anetsberger, Olivier Arcizet, Tobias Kippenberg, Jörg H. Müller, Eugene S. Polzik, Andreas Næsby Rasmussen, Remi Rivière, Anders Simonsen, Koji Usami, Stefan Weis, and Dalziel J. Wilson for their contributions to the work discussed here. Financial support came from the ERC starting grant Q-CEOM, a starting grant from the Danish Council for Independent Research, the EU FP7 grant iQUOEMS, and the Carlsberg Foundation.

Supplementary material

Supplementary material 1 (mp4 16371 KB)

References

  1. 1.
    B.P. Abbott, R. Abbott, T.D. Abbott, M.R. Abernathy, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R.X. Adhikari et al., Phys. Rev. Lett. 116, 061102 (2016)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    D. Rugar, R. Budakian, H.J. Mamin, B.W. Chui, Nature 430, 329 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    M. Aspelmeyer, T.J. Kippenberg, F. Marquardt, Rev. Mod. Phys. 86, 1391 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    Y. Tsaturyan, A. Barg, E.S. Polzik, A. Schliesser, arXiv:1608.00937 (2016)
  5. 5.
    J.W. Wagner, J.B. Spicer, J. Opt. Soc. Am. B 4, 1316 (1987)ADSCrossRefGoogle Scholar
  6. 6.
    Y. Tsaturyan, A. Barg, A. Simonsen, L.G. Villanueva, S. Schmid, A. Schliesser, E.S. Polzik, Opt. Express 6, 6810 (2013)Google Scholar
  7. 7.
    A. Schliesser, G. Anetsberger, R. Rivière, O. Arcizet, T.J. Kippenberg, New J. Phys. 10, 095015 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    T.W. Hänsch, B. Couillaud, Opt. Commun. 35, 441 (1980)ADSCrossRefGoogle Scholar
  9. 9.
    A.A. Clerk, M.H. Devoret, S.M. Girvin, F. Marquardt, R.J. Schoelkopf, Rev. Mod. Phys. 82, 1155 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    A. Schliesser, T. J. Kippenberg, Cavity optomechanics with whispering-gallery modeoptical micro-resonators. in Advances in Atomic, Molecular and Optical Physics, vol. 58, Chap. 5, ed. by P. Berman, E. Arimondo, C. Lin (Elsevier Academic Press, 2010), pp. 207–323Google Scholar
  11. 11.
    S. Stapfner, L. Ost, D. Hunger, J. Reichel, I. Favero, E.M. Weig, Appl. Phys. Lett. 102, 151910 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    G. Anetsberger, O. Arcizet, Q.P. Unterreithmeier, R. Rivière, A. Schliesser, E.M. Weig, J.P. Kotthaus, T.J. Kippenberg, Nat. Phys. 5, 909 (2009)CrossRefGoogle Scholar
  13. 13.
    G. Anetsberger, E. Gavartin, O. Arcizet, Q.P. Unterreithmeier, E.M. Weig, M.L. Gorodetsky, J.P. Kotthaus, T.J. Kippenberg, Phys. Rev. A 82, 061804 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    D.J. Wilson, V. Sudhir, N. Piro, R. Schilling, A. Ghadimi, T.J. Kippenberg, Nature 524, 325 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    C.M. Caves, Phys. Rev. Lett. 45, 75 (1980)ADSCrossRefGoogle Scholar
  16. 16.
    C. Fabre, M. Pinard, S. Bourzeix, A. Heidmann, E. Giacobino, S. Reynaud, Phys. Rev. A 49, 1337 (1994)ADSCrossRefGoogle Scholar
  17. 17.
    S. Mancini, P. Tombesi, Phys. Rev. A 49, 4055 (1994)ADSCrossRefGoogle Scholar
  18. 18.
    T.P. Purdy, P.-L. Yu, R.W. Peterson, N.S. Kampel, C.A. Regal, Phys. Rev. X. 3, 031012 (2013)Google Scholar
  19. 19.
    A.H. Safavi-Naeini, S. Gröblacher, J.T. Hill, J. Chan, M. Aspelmeyer, O. Painter, Nature 500, 185 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    W.H.P. Nielsen, Y. Tsaturyan, C.B. Møller, E.S. Polzik, A. Schliesser, arXiv:1605.06541 (2016)
  21. 21.
    O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, A. Heidmann, Nature 444, 71 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    S. Gigan, H.R. Böhm, M. Paternosto, F. Blaser, G. Langer, J.B. Hertzberg, K.C. Schwab, D. Bäuerle, M. Aspelmeyer, A. Zeilinger, Nature 444, 67 (2006)ADSCrossRefGoogle Scholar
  23. 23.
    A. Schliesser, P. Del’Haye, N. Nooshi, K. Vahala, T. Kippenberg, Phys. Rev. Lett. 97, 243905 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    J.D. Thompson, B.M. Zwickl, A.M. Jayich, F. Marquardt, S.M. Girvin, J.G.E. Harris, Nature 452, 72 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    T.W. Hänsch, A.L. Schawlow, Opt. Commun. 13, 68 (1975)ADSCrossRefGoogle Scholar
  26. 26.
    O. Arcizet, T. Briant, A. Heidmann, M. Pinard, Phys. Rev. A 73, 033819 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    L.F. Buchmann, S. Schreppler, J. Kohler, N. Spethmann, D.M. Stamper-Kurn, Phys. Rev. Lett. 117, 030801 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    N.S. Kampel, R.W. Peterson, R. Fischer, P.-L. Yu, K. Cicak, R.W. Simmonds, K.W. Lehnert, C.A. Regal, arXiv:1607.06831 (2016)
  29. 29.
    A. Schliesser, Cavity optomechanics and optical frequency comb generation with silica whispering-gallery-mode microresonators, Ph.D. thesis, Ludwig-Maximilians-Universität München, 2009Google Scholar
  30. 30.
    G.S. Agarwal, S. Huang, Phys. Rev. A 81, 041803 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, T.J. Kippenberg, Science 330, 1520 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    A.H. Safavi-Naeini, T.P. Mayer, I. Alegre, J. Chan, M. Eichenfield, M. Winger, J.Q. Lin, J.T. Hill, D.E. Chang, O. Painter, Nature 472, 69 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    T. Briant, P.-F. Cohadon, A. Heidmann, M. Pinard, Phys. Rev. A 68, 033823 (2003)ADSCrossRefGoogle Scholar
  34. 34.
    O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, A. Heidmann, J.-M. Mackowski, C. Michel, L. Pinard, O. Francais, L. Rousseau, Phys. Rev. Lett. 97, 133601 (2006)ADSCrossRefGoogle Scholar
  35. 35.
    S. Chakram, Y.S. Patil, L. Chang, M. Vengalattore, Phys. Rev. Lett. 112, 127201 (2014)ADSCrossRefGoogle Scholar
  36. 36.
    Z. Wang, J. Lee, P.X.L. Feng, Nat. Commun. 5, 5158 (2014)ADSCrossRefGoogle Scholar
  37. 37.
    D. Davidovikj, J.J. Slim, S.J. Cartamil-Bueno, H.S.J. van der Zant, P.G. Steeneken, W.J. Venstra, Nano Lett. 16, 2768 (2016)ADSCrossRefGoogle Scholar
  38. 38.
    See Supplementary MaterialGoogle Scholar
  39. 39.
    W. Lauterborn, T. Kurz, M. Wiesenfeldt, Coherent Optics (Springer, Berlin, 1995)CrossRefzbMATHGoogle Scholar
  40. 40.
    J.D. Teufel, R. Donner, M.A. Castellanos-Beltran, J.W. Harlow, K.W. Lehnert, Nat. Nanotech. 4, 820 (2009)ADSCrossRefGoogle Scholar
  41. 41.
    J.D. Teufel, F. Lecocq, R.W. Simmonds, Phys. Rev. Lett. 116, 013602 (2016)ADSCrossRefGoogle Scholar
  42. 42.
    V.B. Braginsky, F.Y. Khalili, Quantum Measurement (Cambridge University Press, Cambridge, 1992)CrossRefzbMATHGoogle Scholar
  43. 43.
    I. Tittonen, G. Breitenbach, T. Kalkbrenner, T. Müller, R. Conradt, S. Schiller, E. Steinsland, N. Blanc, N.F. de Rooij, Phys. Rev. A 59, 1038–1044 (1999)ADSCrossRefGoogle Scholar
  44. 44.
    G. Heinrich, M. Ludwig, J. Qian, B. Kubala, F. Marquardt, Phys. Rev. Lett. 107, 043603 (2011)ADSCrossRefGoogle Scholar
  45. 45.
    M. Mader, J. Reichel, T.W. Hänsch, D. Hunger, Nat. Commun. 6, 7249 (2015)ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  1. 1.Niels Bohr InstituteCopenhagenDenmark

Personalised recommendations