Smartglasses as Assistive Tools for Undergraduate and Introductory STEM Laboratory Courses

  • Martin P. StrzysEmail author
  • Michael Thees
  • Sebastian Kapp
  • Pascal Knierim
  • Albrecht Schmidt
  • Paul Lukowicz
  • Jochen Kuhn


Learning is known to be a highly individual process affected by learners’ individual previous experience and self-directed action. Especially during laboratory courses in university science, technology, engineering and mathematics (STEM) education, all channels of knowledge construction become relevant: students have to match their theoretical background with experimental hands-on experience, leading to an intensive interaction between theory and experiment. Realizing augmented reality scenarios with see-through smartglasses allows to display information directly in the user’s field of view and creates a wearable educational technology, providing learners with active access to various kinds of additional information while keeping their hands free. The framework presented here describes the use of augmented reality learning environments in introductory STEM laboratory courses aiming to provide students additional information and real-time feedback while sustaining their autonomy and the authenticity of their action. Based on principles of the cognitive-affective theory of learning with media (CATLM), we hypothesize that this tool can structure students’ hands-on experiences and guides their attention to cue points of knowledge construction.


Smartglasses Augmented reality Cognitive load Split-attention effect STEM laboratory courses 



Support from the German Federal Ministry of Education and Research (BMBF) via the projects Be-greifen and gLabAssist is gratefully acknowledged.


  1. AAPT. (2014). AAPT recommendations for the undergraduate physics laboratory curriculum. Report prepared by a Subcommittee of the AAPT Committee on Laboratories Endorsed by the AAPT Executive Board.Google Scholar
  2. Akçayır, M., Akçayır, G., Pektaş, H. M., & Ocak, M. A. (2016). Augmented reality in science laboratories: The effects of augmented reality on university students’ laboratory skills and attitudes toward science laboratories. Computers in Human Behavior, 57, 334–342.CrossRefGoogle Scholar
  3. Azuma, R. T. (1997). A survey of augmented reality. Presence: Teleoperators and Virtual Environments, 6(4), 355–385.CrossRefGoogle Scholar
  4. Bacca, J., Baldiris, S., Fabregat, R., Graf, S., & Kinshuk. (2014). Augmented reality trends in education: A systematic review of research and applications. Educational Technology & Society, 17, 133–149.Google Scholar
  5. Baumeister, J., Ssin, S. Y., ElSayed, N. A. M., Dorrian, J., Webb, D. P., Walsh, J. A., Simon, T. M., Irlitti, A., Smith, R. T., Kohler, M., & Thomas, B. H. (2017). Cognitive cost of using augmented reality displays. IEEE Transactions on Visualization and Computer Graphics, 23(11), 2378–2388.CrossRefGoogle Scholar
  6. Benford, S., Greenhalgh, C., Reynard, G., Brown, C., & Koleva, B. (1998). Understanding and constructing shared spaces with mixed-reality boundaries. ACM Transactions on Computer-Human Interaction., 5(3), 185–223.CrossRefGoogle Scholar
  7. Billinghurst, M., & Duenser, A. (2012). Augmented reality in the classroom. Computer, 45(7), 56–63.CrossRefGoogle Scholar
  8. Bimber, O., & Raskar, R. (2005). Spatial augmented reality: Merging real and virtual worlds. Natick: A.K. Peters.CrossRefGoogle Scholar
  9. Brown, D. E., & Hammer, D. (2013). Conceptual change in physics. In S. Vosniadou (Ed.), International handbook of research on conceptual change. New York: Routledge.Google Scholar
  10. Bujak, K. R., Radu, I., Catrambone, R., MacIntyre, B., Zheng, R., & Golubski, G. (2013). A psychological perspective on augmented reality in the mathematics classroom. Computers & Education, 68, 536–544.CrossRefGoogle Scholar
  11. Chang, K., Chang, C., Hou, H., Sung, Y., Chao, H., & Lee, C. (2014). Development and behavioral pattern analysis of a mobile guide system with augmented reality for painting appreciation instruction in an art museum. Computers & Education, 71, 185–197.CrossRefGoogle Scholar
  12. Dede, C. (2009). Immersive interfaces for engagement and learning. Science, 323(5910), 66–69.CrossRefGoogle Scholar
  13. Di Serio, Á., IbÁñez, M. B., & Kloos, C. D. (2013). Impact of an augmented reality system on students’ motivation for a visual art course. Computers & Education, 68, 586–596.CrossRefGoogle Scholar
  14. Finkelstein, N. D., Adams, W. K., Keller, C. J., Kohl, P. B., Perkins, K. K., Podolefsky, N. S., Reid, S., & LeMaster, R. (2005). When learning about the real world is better done virtually: A study of substituting computer simulations for laboratory equipment. Physical Review Special Topics – Physics Education Research, 1, 010103.CrossRefGoogle Scholar
  15. Fujimoto, Y., Yamamoto, G., Kato, H., & Miyazaki, J. (2012). Relation between location of information displayed by augmented reality and user’s memorization. In Proceedings of the 3rd Augmented Human International Conference, AH 12, 7:1–7:8, New York, NY, USA.Google Scholar
  16. Haglund, J., Jeppsson, F., Melander, E., Pendrill, A.-M., Xie, C., & Schönborn, K. J. (2016a). Infrared cameras in science education. Infrared Physics & Technology, 75, 150–152.CrossRefGoogle Scholar
  17. Haglund, J., Jeppsson, F., & Schönborn, K. J. (2016b). Taking on the heat—A narrative account of how infrared cameras invite instant inquiry. Research in Science Education, 46(5), 685–713.CrossRefGoogle Scholar
  18. Hanif, M., Sneddon, P. H., Al-Ahmadi, F. M., & Reid, N. (2009). The perceptions, views and opinions of university students about physics learning during undergraduate laboratory work. European Journal of Physics, 30, 85–96.CrossRefGoogle Scholar
  19. Hochberg, K., Gröber, S., Kuhn, J., & Müller, A. (2014). The spinning disc: Studying radial acceleration and its damping process with smartphones’ acceleration sensor. Physics Education, 49(2), 137–140.CrossRefGoogle Scholar
  20. Hochberg, K., Kuhn, J., & Müller, A. (2018). Using smartphones as experimental tools – Effects on interest, curiosity and learning in physics education. Journal of Science Education and Technology, 27(5), 385–403.CrossRefGoogle Scholar
  21. Hockett, P., & Ingleby, T. (2016). Augmented reality with hololens: Experiential architectures embedded in the real world, Authorea.
  22. Hofstein, A., & Lunetta, V. N. (2004). The laboratory in science education: Foundations for the twenty-first century. Science Education, 88, 28–54.CrossRefGoogle Scholar
  23. Holmes, N. G., & Bonn, D. A. (2015). Quantitative comparison to promote inquiry in the introductory physics lab. The Physics Teacher, 53, 352–355.CrossRefGoogle Scholar
  24. Huk, T., & Ludwigs, S. (2009). Combining cognitive and affective support in order to promote learning. Learning and Instruction, 19(6), 495–505.CrossRefGoogle Scholar
  25. Jara, C. A., Candelas, F. A., Puente, S. T., & Torres, F. (2011). Hands-on experiences of undergraduate students in automatics and robotics using a virtual and remote laboratory. Computers & Education, 57(4), 2451–2461.CrossRefGoogle Scholar
  26. Johnson, L., Adams Becker, S., Estrada, V., & Freeman, A. (2014). NMC Horizon Report: 2014 Higher Education Edition. The New Media Consortium, Austin, TX.Google Scholar
  27. Karelina, A., & Etkina, E. (2007). Acting like a physicist: Student approach study to experimental design. Physical Review Special Topics – Physics Education Research, 3, 020106.CrossRefGoogle Scholar
  28. Klein, P., Hirth, M., Gröber, S., Kuhn, J., & Müller, A. (2014). Classical experiments revisited: Smartphone and tablet PC as experimental tools in acoustics and optics. Physics Education, 49, 412–418.CrossRefGoogle Scholar
  29. Klein, P., Kuhn, J., Müller, A., & Gröber, S. (2015). Video analysis exercises in regular introductory mechanics physics courses: Effects of conventional methods and possibilities of mobile devices. In W. Schnotz, A. H. Kauertz, A. M. Ludwig, & J. Pretsch (Eds.), Multidisciplinary research on teaching and learning (pp. 270–288). London: Palgrave Macmillan.Google Scholar
  30. Kontro, I., Heino, O., Hendolin, I., & Galambosi, S. (2018). Modernisation of the intermediate physics laboratory. European Journal of Physics, 39, 025702.CrossRefGoogle Scholar
  31. Kuhn, J. (2014). Relevant information about using a mobile phone acceleration sensor in physics experiments. American Journal of Physics, 82, 94.CrossRefGoogle Scholar
  32. Kuhn, J., Lukowicz, P., Hirth, M., Poxrucker, A., Weppner, J., & Younas, J. (2016). gPhysics – Using smart glasses for head-centered, context-aware learning in physics experiments. IEEE Transactions on Learning Technologies, 9(4), 304–317.CrossRefGoogle Scholar
  33. Kuhn, J., Molz, A., Gröber, S., & Frübis, J. (2014). iRadioactivity – possibilities and limitations for using smartphones and tablet PCs as radioactive counters. Physics Teacher, 52, 351–356.CrossRefGoogle Scholar
  34. Lin, H.-C. K., Hsieh, M.-C., Wang, C.-H., Sie, Z.-Y., & Chang, S.-H. (2011). Establishment and usability evaluation of an interactive ar learning system on conservation of fish. The Turkish Online Journal of Educational Technology, 10(4), 181–187.Google Scholar
  35. Lunetta, V. N., Hofstein, A., & Clough, M. P. (2005). Learning and teaching in the school science laboratory: An analysis of research, theory, and practice. In S. K. Abell, N. G. Lederman (Eds.) Handbook of research on science education. Taylor & Francis, Mahwah, NJ.Google Scholar
  36. Mayer, R. E. (Ed.). (2014a). The Cambridge handbook of multimedia learning. New York: Cambridge University Press.Google Scholar
  37. Mayer, R. E. (2014b). Cognitive theory of multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning. New York: Cambridge University Press.CrossRefGoogle Scholar
  38. Mayer, R. E., & Fiorella, L. (2014). Principles for reducing extraneous processing in multimedia learning: Coherence, signaling, redundancy, spatial contiguity and temporal contiguity principles. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning. New York: Cambridge University Press.CrossRefGoogle Scholar
  39. Milgram, P., & Kishino, F. (1994). A taxonomy of mixed reality visual displays. IEICE Transactions on Information and Systems, 77(12), 1321–1329.Google Scholar
  40. Moreno, R. (2005). Instructional technology: Promise and pitfalls. In Technology-based education: Bringing researchers and practitioners together. Greenwich: Information Age Publishing.Google Scholar
  41. Moreno, R. (2006). Learning in high-tech and multimedia environments. Current Directions in Psychological Science, 15(2), 63–67.CrossRefGoogle Scholar
  42. Moreno, R., & Mayer, R. (2007). Interactive multimodal learning environments. Educational Psychology Review, 19, 309–326.CrossRefGoogle Scholar
  43. Munnerley, D., Bacon, M., Wilson, A., Steele, J., Hedberg, J., & Fitzgerald, R. (2012). Confronting an augmented reality. Research in learning technology, ALT-C 2012 Conference Proceedings, 0154.Google Scholar
  44. Muñoz-Cristóbal, J. A., Jorrín-AbellÁn, I. M., Asensio-Pérez, J. I., Martínez-Monés, A., Prieto, L. P., & Dimitriadis, Y. (2015). Supporting teacher orchestration in ubiquitous learning environments: A study in primary education. IEEE Transactions on Learning Technologies, 8(1), 83–97.CrossRefGoogle Scholar
  45. Möllmann, K.-P., & Vollmer, M. (2007). Infrared thermal imaging as a tool in university physics education. European Journal of Physics, 28(3), S37–S50.CrossRefGoogle Scholar
  46. Nordine, J., & Weßnigk, S. (2016). Exposing hidden energy transfers with inexpensive thermal imaging cameras. Science Scope, 39(7), 25–31.CrossRefGoogle Scholar
  47. Paas, F., & Sweller, J. (2014). Implications of cognitive load theory for multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning. New York: Cambridge University Press.Google Scholar
  48. Palmerius, K. L., & Schönborn, K. (2016). Visualization of heat transfer using projector-based spatial augmented reality (pp. 407–417). Cham: Springer International Publishing.Google Scholar
  49. Sandor, C., Fuchs, M., Cassinelli, Á., Li, H., Newcombe, R. A., Yamamoto, G., & Feiner, S. K. (2015). Breaking the barriers to true augmented reality. CoRR, abs/1512.05471. arXiv:1512.05471Google Scholar
  50. Santos, M. E. C., Chen, A., Taketomi, T., Yamamoto, G., Miyazaki, J., & Kato, H. (2014). Augmented reality learning experiences: Survey of prototype design and evaluation. IEEE Transactions on Learning Technologies, 7(1), 38–56.CrossRefGoogle Scholar
  51. Schmalstieg, D., & Höllerer, T. (2016). Augmented reality: Principles and practice. Boston: Addison-Wesley Professional.Google Scholar
  52. Schreiber, N., Theyßen, H., & Schecker, H. (2012). Experimental competencies in science: A comparison of assessment tools. In C. Brugière, A. Tiberghien, & P. Clément (Eds.), Proceedings of the ESERA 2011 Conference, Lyon.Google Scholar
  53. Schwarz, O., Vogt, P., & Kuhn, J. (2013). Acoustic measurements of bouncing balls and the determination of gravitational acceleration. Physics Teacher, 51, 312–313.CrossRefGoogle Scholar
  54. Sotiriou, S., & Bogner, F. X. (2008). Visualizing the invisible: Augmented reality as an innovative science education scheme. Advanced Science Letters, 1(1), 114–122.CrossRefGoogle Scholar
  55. Squire, K. D., & Jan, M. (2007). Mad city mystery: Developing scientific argumentation skills with a place-based augmented reality game on handheld computers. Journal of Science Education and Technology, 16(1), 5–29.CrossRefGoogle Scholar
  56. Strzys, M. P., Kapp, S., Thees, M., Klein, P., Lukowicz, P., Knierim, P., Schmidt, A., & Kuhn, J. (2018). Physics holo.lab learning experience: Using smartglasses for augmented reality labwork to foster the concepts of heat conduction. European Journal of Physics, 39, 035703.CrossRefGoogle Scholar
  57. Strzys, M. P., Kapp, S., Thees, M., Kuhn, J., Lukowicz, P., Knierim, P., & Schmidt, A. (2017). Augmenting the thermal flux experiment: A mixed reality approach with the hololens. The Physics Teacher, 55(6), 376.CrossRefGoogle Scholar
  58. Sweller, J. (1999). Instructional design in technical areas. Camberwell: ACER Press.Google Scholar
  59. Theyßen, H., Schecker, H., Gut, C., Hopf, M., Kuhn, J., Labudde, P., Müller, A., Schreiber, N., & Vogt, P. (2014). Modeling and assessing experimental competencies in physics. In C. Bruguière, A. Tiberghien, & P. Clément (Eds.), Topics and trends in current science education: 9th ESERA Conference Selected Contributions, Contributions from Science Education. Dordrecht: Springer.Google Scholar
  60. Vogt, P., Kuhn, J., & Müller, S. (2011). Experiments using cell phones in physics classroom education: The computer aided g-determination. Physics Teacher, 49, 383–384.CrossRefGoogle Scholar
  61. Volkwyn, T. S., Allie, S., Buffler, A., & Lubben, F. (2008). Impact of a conventional introductory laboratory course on the understanding of measurement. Physical Review Special Topics – Physics Education Research, 4, 010108.CrossRefGoogle Scholar
  62. Vollmer, M., & Möllmann, K.-P. (2013). Infrared thermal imaging. Weinheim: Wiley.Google Scholar
  63. Vollmer, M., Möllmann, K.-P., Pinno, F., & Karstädt, D. (2001). There is more to see than eyes can detect. The Physics Teacher, 39(6), 371–376.CrossRefGoogle Scholar
  64. Wieman, C., & Holmes, N. G. (2015). Measuring the impact of an instructional laboratory on the learning of introductory physics. American Journal of Physics, 83, 972–978.CrossRefGoogle Scholar
  65. Wu, H.-K., Lee, S. W.-Y., Chang, H.-Y., & Liang, J.-C. (2013). Current status, opportunities and challenges of augmented reality in education. Computers & Education, 62, 41–49.CrossRefGoogle Scholar
  66. Zwickl, B. M., Finkelstein, N., & Lewandowski, H. J. (2013). The process of transforming an advanced lab course: Goals, curriculum, and assessments. American Journal of Physics, 81, 63.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Martin P. Strzys
    • 1
    Email author
  • Michael Thees
    • 1
  • Sebastian Kapp
    • 1
  • Pascal Knierim
    • 2
  • Albrecht Schmidt
    • 2
  • Paul Lukowicz
    • 3
  • Jochen Kuhn
    • 1
  1. 1.Department of PhysicsPhysics Education Research Group, Technische Universität KaiserslauternKaiserslauternGermany
  2. 2.Institute of informatics, Human-Centered Ubiquitous Media, Ludwig-Maximilians-Universität München, FrauenlobstrMünchenGermany
  3. 3.German Research Center for Artificial Intelligence (DFKI), Embedded Intelligence GroupKaiserslauternGermany

Personalised recommendations