Advertisement

Real-Time Auditory Biofeedback System for Learning a Novel Arm Trajectory: A Usability Study

  • Sophie HallEmail author
  • Fridolin Wild
  • Tjeerd olde Scheper
Chapter

Abstract

There is an increasing interest in employing immersive virtual reality or augmented reality and wearable technology to provide real-time motor performance feedback during rehabilitative arm exercises. Biofeedback systems have been shown to improve motor error, fluidity and speed whilst increasing patient engagement and motivation to persevere. Preliminary research on using sound to provide performance feedback has shown that it can provide spatio-temporal information in a motivating and engaging way. This research presents a proof-of-concept auditory biofeedback system that provides error-corrective sonification of the arms spatial orientation and acceleration throughout a reaching task in order for users to learn and follow a novel trajectory. Evaluation Method: Seven healthy participants (three males, four females) from a healthcare background completed the reaching task whilst using the auditory biofeedback system, both blindfolded and with full vision. Using a System Usability Scale (SUS) study, a quantitative score on the system’s usability was calculated. Results: The mean SUS score was 74.64 (standard deviation = 12.28), indicating that the prototype provides an above average usability score (avg. across 5000 surveys = 68). This research concludes that further investigation into the concept within a clinical environment as a tool for upper arm stroke rehabilitation is recommended.

Keywords

Human computer interaction Rehabilitation Auditory biofeedback Sonification Usability 

References

  1. Bangor, A., Kortum, P., & Miller, J. (2009). Determining what individual SUS scores mean: Adding an adjective rating scale. Journal of Usability Studies, 4(3), 114–123. Retrieved from http://uxpajournal.org/wp-content/uploads/pdf/JUS_Bangor_May2009.pdf.Google Scholar
  2. Brooke, J. (2013). SUS: A retrospective. Journal of Usability Studies, 8(2), 29–40. Retrieved from http://uxpajournal.org/wp-content/uploads/pdf/JUS_Brooke_February_2013.pdf.Google Scholar
  3. Carr, J., & Shepard, R. (2010). Neurological rehabilitation (1st ed.). Churchill Livingstone Elsevier.Google Scholar
  4. Cirstea, M., & Levin, M. (2007). Improvement of arm movement patterns and endpoint control depends on type of feedback during practice in stroke survivors. Neurorehabilitation and Neural Repair, 21(5), 398–411.  https://doi.org/10.1177/1545968306298414.CrossRefGoogle Scholar
  5. Dailly, A., Sigrist, R., Kim, Y., Wolf, P., Erckens, H., Cerny, J., et al. (2012). Can simple error sonification in combination with music help improve accuracy in upper limb movements? In 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob).  https://doi.org/10.1109/biorob.2012.6290908.CrossRefGoogle Scholar
  6. Danna, J., Fontaine, M., Paz-Villagrán, V., Gondre, C., Thoret, E., Aramaki, M., et al. (2015). The effect of real-time auditory feedback on learning new characters. Human Movement Science, 43, 216–228.  https://doi.org/10.1016/j.humov.2014.12.002.CrossRefGoogle Scholar
  7. Danzl, M., Etter, N., Andreatta, R., & Kitzman, P. (2012). Facilitating neurorehabilitation through principles of engagement. Journal of Allied Health. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/22544406.
  8. Faraway, J. (2001). Modeling hand trajectories during reaching motions. Department of Statistics University of Michigan.Google Scholar
  9. Fujii, S., Lulic, T., & Chen, J. (2016). More feedback is better than less: Learning a novel upper limb joint coordination pattern with augmented auditory feedback. Frontiers in Neuroscience, 10.  https://doi.org/10.3389/fnins.2016.00251.
  10. Herman, T., Hunt, A., & Neuhoff, J. (2011). The Sonification handbook. Bielefeld.Google Scholar
  11. Heunis, C. (2016). Design, construction and analysis of an alternative stroke rehabilitation device based on the principles of neuroplasticity (master of engineering). Stellenbosch University.Google Scholar
  12. Huang, H., Ingalls, T., Olson, L., Ganley, K., Rikakis, T., & He, J. (2005). Interactive multimodal biofeedback for task-oriented neural rehabilitation. In 2005 IEEE engineering in medicine and biology 27th annual conference. Engineering in Medicine and Biology Society. Retrieved from https://ieeexplore.ieee.org/document/1616988/
  13. Huang, H., Wolf, S., & He, J. (2006). Recent developments in biofeedback for neuromotor rehabilitation. Journal of Neuroengineering and Rehabilitation, 3(1), 11.  https://doi.org/10.1186/1743-0003-3-11.CrossRefGoogle Scholar
  14. Krakauer, J., & Mazzoni, P. (2011). Human sensorimotor learning: Adaptation, skill, and beyond. Current Opinion in Neurobiology, 21(4), 636–644.  https://doi.org/10.1016/j.conb.2011.06.012.CrossRefGoogle Scholar
  15. Laver, K., George, S., Thomas, S., Deutsch, J., & Crotty, M. (2015). Virtual reality for stroke rehabilitation. Cochrane Database of Systematic Reviews.  https://doi.org/10.1002/14651858.cd008349.pub3.
  16. Lewthwaite, R., & Wulf, G. (2012). Motor learning through a motivational lens. In N. Hodges & M. Williams (Eds.), Skill acquisition in sport: Research, theory and practice (2nd ed.). Routledge.Google Scholar
  17. Merians, A., Jack, D., Burdca, G., Adamovich, S., Recce, M., & Poizner, H. et al. (2002). Virtual reality-augmented rehabilitation for patients following stroke. Physical Therapy Issue 9, 82(9), p898. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/12201804
  18. Phelan, I., Arden, M., Garcia, C., & Roast, C. (2015). Exploring virtual reality and prosthetic training. 2015 IEEE Virtual Reality (VR).  https://doi.org/10.1109/vr.2015.7223441.
  19. Rama Murthy, S., & Mani, M. (2013). Discerning rejection of technology. SAGE Open, 3(2), 215824401348524.  https://doi.org/10.1177/2158244013485248.CrossRefGoogle Scholar
  20. Salmoni, A., Schmidt, R., & Walter, C. (1984). Knowledge of results and motor learning: A review and critical reappraisal. Psychological Bulletin, 95(3), 355–386.  https://doi.org/10.1037/0033-2909.95.3.355.CrossRefGoogle Scholar
  21. Sathiyanarayanan, M., & Rajan, S. (2016). MYO Armband for physiotherapy healthcare: A case study using gesture recognition application. 2016 8th International Conference on Communication Systems and Networks (COMSNETS).  https://doi.org/10.1109/comsnets.2016.7439933.
  22. Sauro, J. (2011). Measuring usability with the system usability scale (SUS). Retrieved from https://measuringu.com/sus/
  23. Scholz, D., Rhode, S., Großbach, M., Rollnik, J., & Altenmüller, E. (2015). Moving with music for stroke rehabilitation: A sonification feasibility study. Annals of the New York Academy of Sciences, 1337(1), 69–76. doi: https://doi.org/10.1111/nyas.12691
  24. Sigrist, R., Rauter, G., Marchal-Crespo, L., Riener, R., & Wolf, P. (2014). Sonification and haptic feedback in addition to visual feedback enhances complex motor task learning. Experimental Brain Research, 233(3), 909–925.  https://doi.org/10.1007/s00221-014-4167-7.CrossRefGoogle Scholar
  25. Singer, B., & Garcia-Vega, J. (2017). The Fugl-Meyer upper extremity scale. Journal of Physiotherapy, 63(1), 53.  https://doi.org/10.1016/j.jphys.2016.08.010.CrossRefGoogle Scholar
  26. Stern, B. (2017). Inside Myo | Myo armband teardown | Adafruit learning system. Learn.adafruit.com. Retrieved 19 June 2017, from https://learn.adafruit.com/myo-armband-teardown/inside-myo
  27. Stroke Association. (2017). State of the nation, 2017. Stroke Association. Retrieved from https://www.stroke.org.uk/sites/default/files/state_of_the_nation_2017_final_1.pdf
  28. Thalmic Labs. (2014). Myo SDK Manual. Thalmic Labs. Retrieved from https://developer.thalmic.com/docs/api_reference/platform/index.html

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sophie Hall
    • 1
    • 2
    Email author
  • Fridolin Wild
    • 1
  • Tjeerd olde Scheper
    • 1
  1. 1.Oxford Brookes UniversityOxfordUK
  2. 2.The Science and Technology Facilities Council, a part of UK Research and InnovationOxfordUK

Personalised recommendations