Advertisement

Semantic Comprehension System for F-2 Emotional Robot

  • Artemy Kotov
  • Nikita Arinkin
  • Alexander Filatov
  • Liudmila Zaidelman
  • Anna Zinina
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 636)

Abstract

Within the project of F-2 personal robot we design a system for automatic text comprehension (parser). It enables the robot to choose “relevant” emotional reactions (output speech and gestures) to an incoming text – currently in Russian. The system executes morphological and syntactic analysis of the text and further constructs its semantic representation. This is a shallow representation where a set of semantic markers (lexical semantics) is distributed between a set of semantic roles – structure of the situation (fact). This representation may be used as (a) fact description – to search for facts with a given structure and (b) basis to invoke emotional reactions (gestures, facial expressions and utterances) to be performed by the personal robot within a dialogue. We argue that the execution of a relevant emotional reaction can be considered as a characteristic of text comprehension by computer systems.

Keywords

Natural language comprehension Syntactic parser Text analysis 

References

  1. 1.
    Searle, J.: Minds, brains, and programs. Behav. Brain Sci. 3, 417–424 (1980)CrossRefGoogle Scholar
  2. 2.
    Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up?: sentiment classification using machine learning techniques. In: Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing, vol. 10, pp. 79–86. Association for Computational Linguistics (2002)Google Scholar
  3. 3.
    Su, F., Markert, K.: From words to senses: a case study of subjectivity recognition. In: Proceedings of the 22nd International Conference on Computational Linguistics, vol. 1, pp. 825–832. Association for Computational Linguistics, Manchester (2008)Google Scholar
  4. 4.
    Chetviorkin, I.I.: Testing the sentiment classification approach in various domains — ROMIP 2011. In: Computational Linguistics and Intellectual Technologies, vol. 2(11), pp. 15–26. RSUH, Moscow (2012)Google Scholar
  5. 5.
    Fang, L., Huang, M.: Fine granular aspect analysis using latent structural models. In: Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Short Papers, vol. 2, pp. 333–337. Association for Computational Linguistics, Jeju Island (2012)Google Scholar
  6. 6.
    Poroshin, V.: Proof of concept statistical sentiment classification at ROMIP 2011. Computational Linguistics and Intellectual Technologies, vol. 2(11), pp. 60–65. RSUH, Moscow (2012)Google Scholar
  7. 7.
    Katz, B.: From sentence processing to information access on the world wide web. In: AAAI Spring Symposium on Natural Language Processing for the World Wide Web (1997)Google Scholar
  8. 8.
    Mavljutov, R.R., Ostapuk, N.A.: Using basic syntactic relations for sentiment analysis. In: Computational Linguistics and Intellectual Technologies, vol. 2(12), pp. 91–100. RSUH, Moscow (2013)Google Scholar
  9. 9.
    Anisimovich, K.V., Druzhkin, K.J., Minlos, F.R., Petrova, M.A., Selegey, V.P., Zuev, K.A.: Syntactic and semantic parser based on ABBYY Compreno linguistic technologies. In: Computational Linguistics and Intellectual Technologies, vol. 2(11), pp. 91–103. RSUH, Moscow. (2012)Google Scholar
  10. 10.
    Recupero, D.R., Presutti, V., Consoli, S., Gangemi, A., Nuzzolese, A.G.: Sentilo: frame-based sentiment analysis. Cogn. Comput. 7, 211–225 (2014)Google Scholar
  11. 11.
    Melčuk, I.A.: The experience of the theory of linguistic models “MEANING <=> TEXT” (in Russian). Languages of the Russian Culture, Moscow (1999)Google Scholar
  12. 12.
    Bocharov, V.V., Alexeeva, S.V., Granovsky, D.V., Protopopova, E.V., Stepanova, M.E., Surikov, A.V.: Crowdsourcing morphological annotation. In: Computational Linguistics and Intellectual Technologies, vol. 12(19), pp. 109–114. RSUH, Moscow (2013)Google Scholar
  13. 13.
    Apresian, V.Yu.: Implicite aggression in the language (in Russian). In: Kobozeva, I.M., Laufer, N.I., Selegey, V.P. (eds.) Computational Linguistics and Intellectual Technologies, pp. 32–35. Nauka, Moscow (2003)Google Scholar
  14. 14.
    Clore, G.L., Ortony, A.: Cognition in emotion: always, sometimes, or never? In: Lane, R.D., Nadel, L. (eds.) Cognitive Neuroscience of Emotion, pp. 24–61. Oxford University Press (2000)Google Scholar
  15. 15.
    Kotov, A., Zinina, A., Filatov, A.: Semantic parser for sentiment analysis and the emotional computer agents. In: Proceedings of the AINL-ISMW FRUCT 2015, pp. 167–170 (2015)Google Scholar
  16. 16.
    Boguslavsky, I.M., Iomdin, L.L., Chardin, I.S., Kreidlin, L.G.: Development of a dependency treebank for russian and its possible applications in NLP. In: Proceedings of the Third International Conference on Language Resources and Evaluation (LREC-2002), vol. III, pp. 852–856. European Language Resources Association, Paris (2002)Google Scholar
  17. 17.
    Fillmore, C.J.: The case for case. In: Emmon, B., Harms, R. (eds.) Universals in Linguistic Theory, pp. 1–68. Holt, Rinehart & Winston, New York (1968)Google Scholar
  18. 18.
    Minsky, M.L.: The Society of Mind. Touchstone Book, New-York, London (1988)Google Scholar
  19. 19.
    Sloman, A., Chrisley, R.: Virtual machines and consciousness. J. Conscious. Stud. 10, 133–172 (2003)Google Scholar
  20. 20.
    Kotov, A.A.: Mechanisms of speech influence (in Russian). Kurchatov Institute, M. (in print)Google Scholar
  21. 21.
    Kotov, A.: Accounting for irony and emotional oscillation in computer architectures. In: Proceedings of International Conference on Affective Computing and Intelligent Interaction ACII 2009, pp. 506–511. IEEE, Amsterdam (2009)Google Scholar
  22. 22.
    Rehm, M., André, E.: From annotated multimodal corpora to simulated human-like behaviors. In: Modeling Communication with Robots and Virtual Humans, pp. 1–17 (2008)Google Scholar
  23. 23.
    Kotov, A., Budyanskaya, E.: The Russian emotional corpus: communication in natural emotional situations. In: Computational Linguistics and Intellectual Technologies, vol. 11(18), pp. 296–306. RSUH, Moscow (2012)Google Scholar
  24. 24.
    Kotov, A.A., Zinina, A.A.: Functional analysis of the nonverbal communicative behavior (in Russian). In: Computational Linguistics and Intellectual Technologies, vol. 1(14), pp. 299–310. RSUH, Moscow (2015)Google Scholar
  25. 25.
    Kopp, S., Krenn, B., Marsella, S., Marshall, A., Pelachaud, C., Pirker, H., Thórisson, K., Vilhjálmsson, H.: Towards a common framework for multimodal generation: the behavior markup language. In: Intelligent Virtual Agents, pp. 205–217 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Artemy Kotov
    • 1
  • Nikita Arinkin
    • 1
  • Alexander Filatov
    • 2
  • Liudmila Zaidelman
    • 1
  • Anna Zinina
    • 1
  1. 1.National Research Center “Kurchatov Institute”MoscowRussia
  2. 2.Samsung R&D Institute RusMoscowRussia

Personalised recommendations