Advertisement

Human Brain Structural Organization in Healthy Volunteers and Patients with Schizophrenia

  • Sergey Kartashov
  • Vadim Ushakov
  • Alexandra Maslennikova
  • Alexander Sboev
  • Anton Selivanov
  • Ivan Moloshnikov
  • Boris Velichkovsky
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 636)

Abstract

The purpose of this work was to study and to compare the structural features of the human brain in two groups of people: healthy volunteers and patients with schizophrenia. According to the data of diffusion magnetic resonance imaging (dMRT), tractography pathways that describe the direction of fibers growth of the white matter of the human brain were reconstructed. Analysis of these paths made it possible to construct maps of the connectivity of all sections of the prepared brain to each other for each subject. With the help of graph theory, so-called rich-club areas were found for each of two groups, that, according to many papers, are the key centers of the brain in the transmission and exchange of information between all areas of the human brain.

Keywords

Diffusion dMRI Structural connections Rich-club Graph theory 

Notes

Acknowledgments

This work is supported by the Russian Science Foundation, grant RScF project № 15-11-30014 and by the MEPhI Academic Excellence Project (Contract No. 02.a03.21.0005).

References

  1. 1.
    Blondel, V.D., Guillaume, J., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exper. 2008(10), P10008 (2008)CrossRefGoogle Scholar
  2. 2.
    Rubinov, M., Sporns, O.: Complex network measures of brain connectivity: uses and interpretations. NeuroImage 53(3), 1059–1069 (2010)CrossRefGoogle Scholar
  3. 3.
    Van den Heuvel, M.P., Sporns, O.: Rich-club organization of the human connectome. J. Neurosci. 31(44), 15775–15786 (2011)CrossRefGoogle Scholar
  4. 4.
    Zavyalova, V., Knyazeva, I., Ushakov, V., Poyda, A., Makarenko, N., Malakhov, D., Velichkovsky, B.: Dynamic clustering of connections between fMRI resting state networks: a comparison of two methods of data analysis. In: Samsonovich, A.V., Klimov, V.V., Rybina, G.V. (eds.) Biologically Inspired Cognitive Architectures (BICA) for Young Scientists. AISC, vol. 449, pp. 265–271. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32554-5_34CrossRefGoogle Scholar
  5. 5.
    Sharaev, M., Ushakov, V., Velichkovsky, B.: Causal interactions within the default mode network as revealed by low-frequency brain fluctuations and information transfer entropy. In: Samsonovich, A., Klimov, V., Rybina, G. (eds) Biologically Inspired Cognitive Architectures (BICA) for Young Scientists. Advances in Intelligent Systems and Computing, vol. 449, pp. 213–218. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32554-5_27CrossRefGoogle Scholar
  6. 6.
    Van den Heuvel, M.P., Sporns, O., Collin, G., Scheewe, T., Mandl, R.C., Cahn, W., Goñi, J., Hulshoff Pol, H.E., Kahn, R.S.: Abnormal richclub organization and functional brain dynamics in schizophrenia. JAMA Psychiatry 70(8), 783–792 (2013)CrossRefGoogle Scholar
  7. 7.
    Bohlken, M.M., Brouwer, R.M., Mandl, R.C., Van den Heuvel, M.P., Hedman, A.M., De Hert, M., Cahn, W., Kahn, R.S., Hulshoff Pol, H.E.: Structural Brain Connectivity as a Genetic Marker for Schizophrenia. JAMA Psychiatry 73(1), 11–19 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Sergey Kartashov
    • 1
    • 3
  • Vadim Ushakov
    • 1
    • 3
  • Alexandra Maslennikova
    • 2
  • Alexander Sboev
    • 1
  • Anton Selivanov
    • 1
  • Ivan Moloshnikov
    • 1
  • Boris Velichkovsky
    • 1
    • 4
  1. 1.NRC Kurchatov InstituteMoscowRussia
  2. 2.Institute of Higher Nervous Activity and Neurophysiology of RASMoscowRussia
  3. 3.National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)MoscowRussia
  4. 4.Technische Universität DresdenDresdenGermany

Personalised recommendations