Part of the Outstanding Contributions to Logic book series (OCTR, volume 13)


I attempt an explication of what it means for an operation across domains to be the same on all domains, an issue that (Feferman, S.: Logic, logics and logicism. Notre Dame J. Form. Log. 40, 31–54 (1999)) took to be central for a successful delimitation of the logical operations. Some properties that seem strongly related to sameness are examined, notably isomorphism invariance, and sameness under extensions of the domain. The conclusion is that although no precise criterion can satisfy all intuitions about sameness, combining the two properties just mentioned yields a reasonably robust and useful explication of sameness across domains.


Logical constants Isomorphism invariance Extension Generalized quantifiers 

2010 Mathematics Subject Classification

03B65 03C80 91F20 


  1. 1.
    Barwise, J., Cooper, R.: Generalized quantifiers and natural language. Linguist. Philos. 4, 159–219 (1981)CrossRefMATHGoogle Scholar
  2. 2.
    Bonnay, D.: Logicality and invariance. Bull. Symb. Log. 14(1), 29–68 (2008)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bonnay, D., Engström, F.: Invariance and definability, with and without equality. Notre Dame J. Form. Log. 58 (2016)Google Scholar
  4. 4.
    Feferman, S.: Logic, logics and logicism. Notre Dame J. Form. Log. 40, 31–54 (1999)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Feferman, S.: Set-theoretical invariance criteria for logicality. Notre Dame J. Form. Log. 51, 3–20 (2010)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Feferman, S.: Which quantifiers are logical? a combined semantical and inferential criterion. In: Torza, A. (ed.) Quantifiers, Quantifiers and Quantifiers, pp. 19–30. Springer, Berlin (2015)CrossRefGoogle Scholar
  7. 7.
    Kolaitis, P., Väänänen, J.: Generalized quantifiers and pebble games on finite structures. Ann. Pure Appl. Log. 74, 23–75 (1995)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Lindström, P.: First order predicate logic with generalized quantifiers. Theoria 32, 175–71 (1966)MathSciNetMATHGoogle Scholar
  9. 9.
    McGee, V.: Logical operations. J. Philos. Log. 25, 567–80 (1996)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Mundici, D.: Other quantifiers: An overview. In: Barwise, J., Feferman, S. (eds.) Model-Theoretic Logics, pp. 211–233. Springer-Verlag, Berlin (1985)Google Scholar
  11. 11.
    Peters, S., Westerståhl, D.: Quantifiers in Language and Logic. Oxford University Press, Oxford (2006)Google Scholar
  12. 12.
    Peters, S., Westerståhl, D.: The semantics of possessives. Language 89(4), 713–759 (2013)CrossRefGoogle Scholar
  13. 13.
    Rescher, N.: Plurality-quantification (abstract). J. Symb. Log. 27, 373–374 (1962)CrossRefGoogle Scholar
  14. 14.
    Shelah, S.: Generalized quantifiers and compact logic. Trans. Am. Math. Soc. 204, 342–364 (1975)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Sher, G.: The Bounds of Logic. The MIT Press, Cambridge (1991)MATHGoogle Scholar
  16. 16.
    Tarski, A.: What are logical notions? Hist. Philos. Log. 7, 145–154 (1986)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Väänänen, J.: Models and Games. Cambridge University Press, Cambridge (2011)CrossRefMATHGoogle Scholar
  18. 18.
    Väänänen, J., Westerståhl, D.: On the expressive power of monotone natural language quantifiers over finite models. J. Philos. Log. 31, 327–358 (2002)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    van Benthem, J.: Questions about quantifiers. J. Symb. Log. 49, 443–466 (1984)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    van Benthem, J.: Essays in Logical Semantics. Kluwer, Dordrecht (1986)CrossRefMATHGoogle Scholar
  21. 21.
    van Benthem, J.: Logical constants across varying types. Notre Dame J. Form. Log. 315–342 (1989)Google Scholar
  22. 22.
    Westerståhl, D.: Logical constants in quantifier languages. Linguist. Philos. 8, 387–413 (1985)CrossRefGoogle Scholar
  23. 23.
    Westerståhl, D.: Relativization of quantifiers in finite models. In: van der Does, J., van Eijck, J. (eds.) Generalized Quantifier Theory and Applications, pages 187–205. ILLC, Amsterdam. (1991) Also in Quantifiers: Logic, Models and Computation (same editors), pp. 375–383, CSLI Publications, Stanford (1996)Google Scholar
  24. 24.
    Westerståhl, D.: Constant operators: Partial quantifiers. In: Larsson, S., Borin, L. (eds.) From Quantification to Conversation, pp. 11–35. College Publications, London (2012)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of PhilosophyStockholm UniversityStockholmSweden

Personalised recommendations