Feferman on Foundations pp 3-22 | Cite as
From Choosing Elements to Choosing Concepts: The Evolution of Feferman’s Work in Model Theory
Abstract
When Solomon Feferman began his research with Alfred Tarski in the early 1950s, model theory was still in process of becoming a distinct part of mathematical logic. Although Feferman’s doctoral thesis was not in model theory, his interests included model theory from the start, and he published a paper in the field roughly once every six years throughout his career. His earliest work in model theory is recognised in the name ‘Feferman-Vaught theorem’, which stems from some very detailed bare-hands work on sums and products of structures. During the 1960s and 1970s he worked on applications of many-sorted interpolation theorems, in particular to derive results relating implicit and explicit definability in various contexts. In the 1980s he edited with Jon Barwise a monumental collection of essays on ‘Model-theoretic logics’. In more recent papers he reflected on the conceptual basis of model theory from a historical point of view.
Keywords
Solomon Feferman Model theory Feferman-Vaught theorem Interpolation theorem2010 Subject Classification
03C99References
- 1.Barwise, J., Feferman, S. (eds.): Model-Theoretic Logics. Perspectives in Mathematical Logic. Springer, New York (1985)Google Scholar
- 2.Beth, Evert W.: On Padoa’s method in the theory of definition. Nederl. Akad. Wetensch. Proc. Ser. A (= Indagationes Mathematicae 15) 56, 330–339 (1953)Google Scholar
- 3.Craig, W.: Review of [2]. J. Symb. Log. 21(2), 194–195 (1956)CrossRefGoogle Scholar
- 4.Craig, W.: Linear reasoning: a new form of the Herbrand-Gentzen theorem. J. Symb. Log. 22(3), 250–268 (1957)MathSciNetCrossRefMATHGoogle Scholar
- 5.Craig, W.: Three uses of the Herbrand-Gentzen theorem in relating model theory and proof theory. J. Symb. Log. 22(3), 269–285 (1957)MathSciNetCrossRefMATHGoogle Scholar
- 6.Derakhshan, J., Macintyre, A.: Some supplements to Feferman-Vaught related to the model theory of adeles. Ann. Pure Appl. Log. 165(11), 1639–1679 (2014)MathSciNetCrossRefMATHGoogle Scholar
- 7.Doner, J.E., Mostowski, A., Tarski, A.: The elementary theory of well-ordering – a metamathematical study. In: Macintyre, A., Pacholski, L., Paris, J. (eds.) Logic Colloquium 77, pp. 1–54. North-Holland, Amsterdam (1978)Google Scholar
- 8.Ehrenfeucht, A.: Application of games to some problems of mathematical logic. Bull. de l’Acad. Pol. Sci. Cl 3(5), 35–37 (1957)MathSciNetMATHGoogle Scholar
- 9.Eklof, P.C.: Applications to algebra, in [1] pp. 423–441Google Scholar
- 10.Evans, David M., Hodges,W., Hodkinson, Ian M.: Automorphisms of bounded abelian groups. Forum Math. 3, 523–542 (1991)Google Scholar
- 11.Feferman, A.B., Feferman, S.: Alfred Tarski: Life and Logic. Cambridge University Press, Cambridge (2004)Google Scholar
- 12.Feferman, S.: Some recent work of Ehrenfeucht and Fraisse. In: Proceedings of the Summer Institute of Symbolic Logic, Cornell Ithaca (1957), Communications Research Division, pp. 201–209. Institute for Defense Analyses, Princeton NJ, (1960)Google Scholar
- 13.Feferman, S.: Lectures on proof theory. In: Proceedings of the Summer School in Logic, Leeds 1967, Lecture Notes in Mathematics 70. pp. 1–107. Springer, Berlin (1968)Google Scholar
- 14.Feferman, S.: Persistent and invariant formulas for outer extensions. Compos. Math. 20, 29–52 (1968)MathSciNetMATHGoogle Scholar
- 15.Feferman, S.: Ordinals and functionals in proof theory. Actes du Congrès Internationale des Mathématiciens 1, 229–233. Nice (1970)Google Scholar
- 16.Feferman, S.: Infinitary properties, local functors, and systems of ordinal functions. In: Hodges, w. (ed.) Conference in Mathematical Logic: London 1970, Lecture Notes in Mathematics 255, pp. 63–97. Springer, Berlin (1972)Google Scholar
- 17.Feferman, S.: Applications of many-sorted interpolation theorems. In: Henkin, L. et al., (eds.) Proceedings of the Tarski Symposium. pp. 205–223. American Mathematical Society, Providence RI (1974)Google Scholar
- 18.Feferman, S.: ‘Two notes on abstract model theory. I. Properties invariant on the range of definable relations between structures. Fundam. Math. 82, 153–165 (1974)MathSciNetCrossRefMATHGoogle Scholar
- 19.Feferman, S.: Two notes on abstract model theory. II. Languages for which the set of valid sentences is semi-invariantly implicitly definable. Fundam. Math. 89, 111–130 (1975)MathSciNetCrossRefMATHGoogle Scholar
- 20.Feferman, S.: Generalizing set-theoretical model theory and an analogue theory on admissible sets. In: Hintikka, J., Niiniluoto, I., Saarinen, E. (eds.) Essays on Mathematical and Philosophical Logic: Proceedings of the Fourth Scandinavian Logic Symposium and of the First Soviet-Finnish Logic Conference, Jyväskylä, Finland, June 29–July 6, 1976, pp. 171–195. Reidel, Dordrecht (1979)Google Scholar
- 21.Feferman, S.: Three conceptual problems that bug me. Draft lecture notes for 7th Scandinavian Logic Symposium, Uppsala, August 18–20. (1996). math.stanford.edu/\(\sim \)feferman/papers/conceptualprobs.pdfGoogle Scholar
- 22.Feferman, S.: Logic, logics, and logicism. Notre Dame J. Form. Log. 40(1), 31–54 (1999)MathSciNetCrossRefMATHGoogle Scholar
- 23.Feferman, S.: Ah, Chu!. In: JFAK, Essays Dedicated to Johan Van Benthem on the Occasion of his 50th Birthday (1999) (compact disc; the paper is available at math.stanford.edu/\(\sim \)feferman/papers)Google Scholar
- 24.Feferman, S.: Tarski’s conception of logic. Ann. Pure Appl. Log. 126(1), 5–13 (2004)MathSciNetCrossRefMATHGoogle Scholar
- 25.Feferman, S.: What kind of logic is Independence-Friendly logic?. In: Randall E. Auxier., Hahn, L.E. (eds.) The Philosophy of Jaakko Hintikka, vol. XXX, pp. 453–469. Library of Living Philosophers, Open Court, Chicago IL (2006)Google Scholar
- 26.Feferman, S.: Tarski’s conceptual analysis of semantical notions. In: Patterson, D. (ed.) New Essays on Tarski and Philosophy, pp. 72–93. Oxford University Press, Oxford (2008)CrossRefGoogle Scholar
- 27.Feferman, S.: Harmonious logic: Craig’s interpolation theorem and its descendants. Synthese 164(3), 341–357 (2008)MathSciNetCrossRefMATHGoogle Scholar
- 28.Feferman, S.: Andrzej Mostowski: An Appreciation. In: Ehrenfeucht, A., Marek, V.W., Srebrny, M. (eds.) Andrzej Mostowski and Foundational Studies, pp. 388–392. IOS Press, Amsterdam (2008)Google Scholar
- 29.Feferman, S.: Set-theoretical invariance criteria for logicality. Notre Dame J. Form. Log. 51(1), 3–20 (2010)MathSciNetCrossRefMATHGoogle Scholar
- 30.Feferman, S.: Which quantifiers are logical? A combined semantical and inferential criterion. Preprint 2013, math.stanford.edu/\(\sim \)feferman/papers/ WhichQsLogical(text).pdfGoogle Scholar
- 31.Feferman, S.: A fortuitous year with Leon Henkin. In: Manzano, M., Sain, I., Alonso, E. (eds.) The Life and Work of Leon Henkin, pp. 35–40. Birkhäuser, Heidelberg (2014)Google Scholar
- 32.Feferman, S., Kreisel, G.: Persistent and invariant formulas relative to theories of higher order. Bull. Am. Math. Soc. 72(3), 480–485 (1966)Google Scholar
- 33.Feferman, S., Vaught, R.: The first order properties of products of algebraic systems. Fundam. Math. 47, 57–103 (1959)MathSciNetCrossRefMATHGoogle Scholar
- 34.Felscher, I.: Model composition in model-checking, Doctoral Dissertation, Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen, (2014)Google Scholar
- 35.Fraïssé, R.: Sur quelques classifications des relations, basées sur des isomorphismes restreints. II. Applications aux relations d’ordre, et construction d’exemples montrant que ces classifications sont distinctes. In: Publ. Sci. de l’Université d’Alger, Série A (Mathematiques), vol. 2, pp. 273–295. (1957)Google Scholar
- 36.Gaifman, H.: Operations on relational structures, functors and classes. I. In: Henkin, L. et al., (eds.) Proceedings of the Tarski Symposium. pp. 21–39. American Mathematical Society, Providence RI (1974)Google Scholar
- 37.Gurevich, Y.: Monadic Second-Order Theories, in [1] pp. 479–506Google Scholar
- 38.Hintikka, J.: Intellectual autobiography. In: Randall E. Auxier., Hahn, L.E. (eds.) The Philosophy of Jaakko Hintikka. Library of Living Philosophers vol. XXX, pp. 3–84. Open Court, Chicago IL (2006)Google Scholar
- 39.Hintikka, J.: Distributive Normal Forms in the Calculus of Predicates, Acta Philosophica Fennica 6. Philosophical Society of Finland, Helsinki (1953)Google Scholar
- 40.Hodges, W.: Tarski on Padoa’s Method: a test case for understanding logicians of other traditions. In: Chakraborti, Mihir K. et al., (eds.) Logic, Navya-Nyāya and Applications: Homage to Bimal Krishna Matilal, pp. 155–169. College Publications, London (2008)Google Scholar
- 41.Krajewski, S., Srebrny, M.: On the life and work of Andrzej Mostowski (1913–1975). In: Ehrenfeucht, A., Marek, V.W., Srebrny, M. (eds.) Andrzej Mostowski and Foundational Studies, pp. 3–14. IOS Press, Amsterdam (2008)Google Scholar
- 42.Kreisel, G.: Set theoretic problems suggested by the notion of potential totality, in Infinitistic Methods. Pergamon Press, Warsaw (1959)Google Scholar
- 43.Łoś, Jerzy: On the extending of models (I). Fundam. Math. 42, 38–54 (1955)MathSciNetCrossRefMATHGoogle Scholar
- 44.Lyndon, Roger C.: An interpolation theorem in the predicate calculus. Pac. J. Math. 9, 129–142 (1959)MathSciNetCrossRefMATHGoogle Scholar
- 45.Lyndon, Roger C.: Properties preserved under homomorphism. Pac. J. Math. 9, 143–154 (1959)MathSciNetCrossRefMATHGoogle Scholar
- 46.Makkai, M.: An application of a method of Smullyan to logics on admissible sets. Bull. Pol. Acad. Sci. 17, 341–346 (1969)MathSciNetMATHGoogle Scholar
- 47.Makowsky, J.A.: Algorithmic uses of the Feferman-Vaught Theorem. Ann. Pure Appl. Log. 126(1), 159–213 (2004)MathSciNetCrossRefMATHGoogle Scholar
- 48.Mal’tsev, Anatoliĭ I.: Model’niye sootvestvija, Izvestiya Rossiiskoi Akademii Nauk Seriya Matematicheskaya 23(3), pp. 313–336; trans. as ‘Model correspondences.: In Mal’cev, A.I. (ed.) The Metamathematics of Algebraic Systems: Collected Papers 1936–1967, ed. and trans. Benjamin Franklin Wells III, pp. 66–94. North-Holland, Amsterdam (1971)Google Scholar
- 49.Marker, D.: A model theoretic proof of Feferman’s preservation theorem. Notre Dame J. Form. Log. 25(3), 213–216 (1984)MathSciNetCrossRefMATHGoogle Scholar
- 50.Mostowski, A.: On direct products of theories. J. Symb. Log. 17(1), 1–31 (1952)MathSciNetCrossRefMATHGoogle Scholar
- 51.Mostowski, A., Tarski, A.: Arithmetical classes and types of well ordered systems. Preliminary report. Bull. Am. Math. Soc. 55, 65 (1949)Google Scholar
- 52.Otto, M.: An interpolation theorem. Bull. Symb. Log. 6(4), 447–462 (2000)MathSciNetCrossRefMATHGoogle Scholar
- 53.Padoa, A.: Essai d’une théorie algébrique des nombres entiers, précédé d’une introduction logique à une théorie déductive quelconque. In: Bibliothèque du Congrès international de philosophie, Paris, 1900, vol. 3, Armand Colin, Paris 1902, pp. 309–365; translated in part as ‘Logical introduction to any deductive theory’ in From Frege to Gödel, ed. Jean van Heijenoort, pp. 118–123. Harvard University Press, Cambridge Mass. (1967)Google Scholar
- 54.Stern, J.: A new look at the interpolation problem. J. Symb. Log. 40(1), 1–13 (1975)MathSciNetCrossRefMATHGoogle Scholar
- 55.Tarski, A.: Some notions and methods on the borderline of algebra and metamathematics. In: Proceedings of the International Congress of Mathematicians: Cambridge, Massachusetts. vol. 1, pp. 705–720. American Mathematical Society, Providence RI (1952)Google Scholar
- 56.Ulsen, Paul van.:E. W. Beth als logicus, Doctoral Dissertation, Institute for Logic, Language and Computation, Amsterdam (2000); ILLC Dissertation Series DS–2000–04Google Scholar
- 57.Väänänen, J.: Set-Theoretic Definability of Logics, in [1] pp. 599–643Google Scholar
- 58.Zucker, J.I.: The adequacy problem for classical logic. J. Philos. Log. 7(1), 517–535 (1978)MathSciNetMATHGoogle Scholar