Radiopharmaceuticals for Treatment of NETs

  • Mattia Asti
  • Michele Iori
  • Pier Cesare Capponi
  • Sara Rubagotti
Chapter

Abstract

Neuroendocrine tumours (NETs) are a group of unusual cancers which develop from cells of the diffuse endocrine system. They are found most commonly in lungs or gastrointestinal system, but they can also originate in other tissues such as pancreas, ovary and testes. A common feature of NETs is that they almost all overexpress somatostatin receptors. For this reason somatostatin receptors have been considered as a target for radiolabelled radiopharmaceuticals. These molecules are constituted by a peptide chain (i.e. a somatostatin-like structure), a partially or totally electron emitter radionuclide and a suitable bifunctional chelator able both to firmly complex the radionuclide as well as to be connected to the peptide chain by means of proper molecular spacers. Nowadays, the most used radiopharmaceuticals for treatments of NETs are [DOTA]0-Tyr3-octreotide (DOTATOC) and [DOTA0]-Tyr3-octreotate (DOTATATE) labelled with yttrium-90 and lutetium-177.

Keywords

Yttrium-90 Lutetium-177 Somatostatin analogue PRRT DOTATOC DOTATATE Radiolabelling Quality controls NETs 

Notes

Acknowledgements

The author thanks Coruzzi Chiara for the work on the raw material, the proofs for correction and for the bibliographic research.

References

  1. 1.
    Gudkov SV, Shilyagina NY, Vodeneev VA, et al. Targeted radionuclide therapy of human tumors. Int J Mol Sci. 2016;17:33.CrossRefGoogle Scholar
  2. 2.
    De Jong M, Breeman WA, Kwekkeboom DJ, et al. Tumor imaging and therapy using radiolabeled somatostatin analogues. Acc Chem Res. 2009;42:873–80.CrossRefPubMedGoogle Scholar
  3. 3.
    Ambrosini V, Fani M, Fanti S, et al. Radiopeptide imaging and therapy in Europe. J Nucl Med. 2011;52:42S–55S.CrossRefPubMedGoogle Scholar
  4. 4.
    Gabriel M, Oberauer A, Dobrozemsky G, et al. 68Ga-DOTA-Tyr3 octreotide PET for assessing response to somatostatin-receptor-mediated radionuclide therapy. J Nucl Med. 2009;50:1427–34.CrossRefPubMedGoogle Scholar
  5. 5.
    Kwekkeboom DJ, Krenning EP. Peptide receptor radionuclide therapy in the treatment of neuroendocrine tumors. Hematol Oncol Clin North Am. 2016;30:179–91.CrossRefPubMedGoogle Scholar
  6. 6.
    Sabet A, Biersack HJ, Ezziddin S. Advances in peptide receptor radionuclide therapy. Semin Nucl Med. 2016;46:40–6.Google Scholar
  7. 7.
    Patel YC. General aspects of the biology and function of somatostatin. In:Somatostatin, Basic and clinical aspects of neuroscience, vol. 4. Berlin: Springer; 1992.CrossRefGoogle Scholar
  8. 8.
    Patel YC. Somatostatin and its receptor family. Front Neuroendocrinol. 1999;20(3):157–98.CrossRefPubMedGoogle Scholar
  9. 9.
    Reubi JC. Peptide receptors as molecular targets for cancer diagnosis and therapy. Endocr Rev. 2003;24(4):389–427.CrossRefPubMedGoogle Scholar
  10. 10.
    Froidevaux S, Eberle AN. Somatostatin analogs and radiopeptides in cancer therapy. Biopolymers. 2002;66:161–83.CrossRefPubMedGoogle Scholar
  11. 11.
    van der Lely AJ, de Herder WW, Krenning EP, et al. Octreoscan radioreceptor imaging. Endocrine. 2003;20(3):307–11.CrossRefPubMedGoogle Scholar
  12. 12.
    Delacroix D, Guerre JP, Leblanc P, et al. Radionuclide and radiation protection data handbook 2nd edition (2002). Radiat Prot Dosim. 2002;98:9–168.CrossRefGoogle Scholar
  13. 13.
    Barone R, Borson-Chazot F, Valkema R, et al. Patient-specific dosimetry in predicting renal toxicity with 90Y-DOTATOC: relevance of kidney volume and dose rate in finding a dose–effect relationship. J Nucl Med. 2005;46:99S–106S.PubMedGoogle Scholar
  14. 14.
    Hind E, Zanotti-Fregonara P, Quinto MA, et al. Dose deposits from 90Y, 177Lu, 111In, and 161Tb in micrometastases of various sizes: implications for radiopharmaceutical therapy. J Nucl Med. 2016;57:759.  https://doi.org/10.2967/jnumed.115.170423.CrossRefGoogle Scholar
  15. 15.
    Smith-Jones PM, Stolz B, Albert R, et al. Synthesis and characterisation of [90Y]-Bz-DTPA-oct: a yttrium-90-labelled octreotide analogue for radiotherapy of somatostatin receptor-positive tumours. Nucl Med Biol. 1998;25(3):181–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Otte A, Jermann E, Behe M, et al. DOTATOC: a powerful new tool for receptor-mediated radionuclide therapy. Eur J Nucl Med. 1997;24(7):792–5.PubMedGoogle Scholar
  17. 17.
    Strosberg J, El-Haddad G, Wolin E, et al. Phase 3 trial of 177Lu-dotatate for midgut neuroendocrine tumors. N Engl J Med. 2017;376(2):125–35.CrossRefPubMedGoogle Scholar
  18. 18.
    Schuchardt C, Kulkarni HR, Prasad V, et al. The bad berka dose protocol: comparative results of dosimetry in peptide receptor radionuclide therapy using 177Lu-DOTATATE, 177Lu-DOTANOC, and 177Lu-DOTATOC. In: Baum R, Rösch F, editors. Theranostics, gallium-68, and other radionuclides, Recent results in cancer research, vol. 194. Berlin: Springer; 2013.Google Scholar
  19. 19.
    Esser JP, Krenning EP, Teunissen JJ, et al. Comparison of [(177) Lu-OTA(0), Tyr(3)] octreotate and [(177) Lu-DOTA(0), Tyr(3)] octreotide: which peptide is preferable for PRRT? Eur J Nucl Med Mol Imaging. 2006;33:1346–51.CrossRefPubMedGoogle Scholar
  20. 20.
    Antunes P, Ginj M, Zhang H, et al. Are radiogallium-labelled DOTA-conjugated somatostatin analogues superior to those labelled with other radiometals? Eur J Nucl Med Mol Imaging. 2007;34:982–93.CrossRefPubMedGoogle Scholar
  21. 21.
    Förster GJ, Engelbach M, Brockmann J, et al. Preliminary data on biodistribution and dosimetry for therapy planning of somatostatin receptor positive tumours: comparison of 86Y-DOTATOC and 111In-DTPA-octreotide. Eur J Nucl Med. 2001;28(12):1743–50.CrossRefPubMedGoogle Scholar
  22. 22.
    De Jong M, Bakker WH, Krenning EP, et al. Yttrium-90 and indium-111 labelling, receptor binding and biodistribution of [DOTA0,d-Phe1,Tyr3]octreotide, a promising somatostatin analogue for radionuclide therapy. Eur J Nucl Med. 1997;24:368–71.PubMedGoogle Scholar
  23. 23.
    Breeman WA, Chan HS, de Zanger RM, et al. Overview of development and formulation of 177Lu-DOTA-TATE for PRRT. Curr Radiopharm. 2016;9(1):8–18.CrossRefPubMedGoogle Scholar
  24. 24.
    Breeman WA, van der Wansem K, Bernard BF, et al. The addition of DTPA to [177Lu-DOTA0,Tyr3]octreotate prior to administration reduces rat skeleton uptake of radioactivity. Eur J Nucl Med Mol Imaging. 2003;30(2):312–5.CrossRefPubMedGoogle Scholar
  25. 25.
    Breeman WA, De Jong MT, De Blois E, et al. Reduction of skeletal accumulation of radioactivity by co-injection of DTPA in [90Y-DOTA0,Tyr3]octreotide solutions containing free 90Y3+. Nucl Med Biol. 2004;31(6):821–4.CrossRefPubMedGoogle Scholar
  26. 26.
    Scott PJ, Hockley BG, Kung HF, et al. Studies into radiolytic decomposition of fluorine-18 labeled radiopharmaceuticals for positron emission tomography. Appl Radiat Isot. 2009;67(1):88–94.CrossRefPubMedGoogle Scholar
  27. 27.
    Asti M, Atti G, Iori M, et al. Semi-automated labelling and fractionation of yttrium-90 and lutetium-177 somatostatin analogues using disposable syringes and vials. Nucl Med Commun. 2012;33:1144–52.CrossRefPubMedGoogle Scholar
  28. 28.
    European Directorate for the Quality of Medicines & Healthcare (EDQM). Gallium (68Ga) edotreotide injection. European Pharmacopoeia 7.6. 2013;2482:4847–48.Google Scholar
  29. 29.
    European Directorate for the Quality of Medicines & Healthcare (EDQM). Extemporaneous preparation of radiopharmaceutical preparations. Chapter 5.19. In:European pharmacopoeia. 8th ed. Strasbourg: EDQM; 2016.Google Scholar
  30. 30.
    Elsinga P, Todde S, Penuelas I, et al. Guidance on current good radiopharmacy practice (cGRPP) for the small-scale preparation of radiopharmaceuticals. Eur J Nucl Med Mol Imaging. 2010;37:1049–62.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Zaknun JJ, Bodei L, Mueller-Brand J, et al. The joint IAEA, EANM, and SNMMI practical guidance on peptide receptor radionuclide therapy (PRRNT) in neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2013;40(5):800–16.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    International Atomic Energy Agency. Therapeutic radionuclide generators: 90Sr/90Y and 188W/188Re generators, Technical Reports Series No. 470. Vienna: International Atomic Energy Agency; 2009.Google Scholar
  33. 33.
    Castillo AX, Pérez-Malo M, Isaac-Olivé K, et al. Production of large quantities of 90Y by ion-exchange chromatography using an organic resin and a chelating agent. Nucl Med Biol. 2010;37(8):935–42.CrossRefPubMedGoogle Scholar
  34. 34.
    Dash A, Pillai MR, Knapp FF Jr. Production of (177)Lu for targeted radionuclide therapy: available options. Nucl Med Mol Imaging. 2015;49(2):85–107.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Tarasov VA, Andreev OI, Romanov EG, et al. Production of no-carrier added lutetium-177 by irradiation of enriched ytterbium-176. Curr Radiopharm. 2015;8(2):95–106.CrossRefPubMedGoogle Scholar
  36. 36.
    Williams K. Endotoxins. 3rd ed. New York: Informa Healthcare; 2007. p. 27–90.Google Scholar
  37. 37.
    Cooper JF, Thoma LA. Screening extemporaneously compounded intraspinal injections with the bacterial endotoxins test. Am J Health Syst Pharm. 2002;59:2426–33.PubMedGoogle Scholar
  38. 38.
    Dragotakes SC, Cooper JF, Hubers D. A new system for the rapid detection of endotoxin in PET radiopharmaceuticals. (abstract). 2005. Society of Nuclear Medicine. Toronto.Google Scholar
  39. 39.
    Biasiotto G, Bertagna F, Zanella I, et al. Production and quality control of [(90)Y]DOTATOC for treatment of metastatic neuroendocrine tumors: results of 85 syntheses. Nucl Med Commun. 2013;34(3):265–70.CrossRefPubMedGoogle Scholar
  40. 40.
    Kunikowska J, Królicki L, Dydejczyk AH, et al. Clinical results of radionuclide therapy of neuroendocrine tumours with 90Y-DOTATATE and tandem 90Y/177Lu-DOTATATE: which is a better therapy option? Eur J Nucl Med Mol Imaging. 2011;38(10):1788–97.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Petrik M, Knetsch PA, Knopp R, et al. Radiolabelling of peptides for PET, SPECT and therapeutic applications using a fully automated disposable cassette system. Nucl Med Commun. 2011;32:887–95.CrossRefPubMedGoogle Scholar
  42. 42.
    Mukherjee A, Lohar S, Dash A, et al. Single vial kit formulation of DOTATATE for preparation of (177) Lu-labeled therapeutic radiopharmaceutical at hospital radiopharmacy. J Label Compd Radiopharm. 2015;58(4):166–72.CrossRefGoogle Scholar
  43. 43.
    Taşdelen B, Ergun A, Büyükkaya F, et al. Rapid isocratic HPLC investigation of radiochemical purity for 90Y-DOTATATE. J Radioanal Nucl Chem. 2011;289(2):573–5.CrossRefGoogle Scholar
  44. 44.
    Breeman WAP, Chan HS, de Blois E. Determination of peptide content and purity of DOTA-peptides by metal ion titration and UPLC: an alternative method to monitor quality of DOTA-peptides. J Radioanal Nucl Chem. 2004;302(2):825–30.CrossRefGoogle Scholar
  45. 45.
    Asti M, Tegoni M, Farioli D, et al. Influence of cations on complexation yield of DOTATATE with yttrium and lutetium: a perspective study for enhancing the 90Y and 177Lu labeling conditions. Nucl Med Biol. 2012;39(4):509–17.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Mattia Asti
    • 1
  • Michele Iori
    • 1
  • Pier Cesare Capponi
    • 1
  • Sara Rubagotti
    • 1
  1. 1.Nuclear Medicine Unit, Oncology and Advanced Technologies DepartmentAzienda Unità Sanitaria Locale-IRCCSReggio EmiliaItaly

Personalised recommendations