Radioembolization of Hepatic Metastases with 90Y-Microspheres: Indications and Procedure

  • Rosa Sciuto
  • Sandra Rea
  • Giuseppe Pizzi
  • Giulio E. Vallati
  • Lidia Strigari
Chapter

Abstract

Radioembolization using 90Y-microspheres (90Y-RE) represents a safe and efficacy technique for treating metastatic liver malignancies with a growing number of ongoing trials and clinical experience in different types of tumors. 90Y-RE is treatment modality that needs to be adapted to the individual patient, every step of the way. The appropriate patient selection for selection of patients to the treatment requires a multidisciplinary discussion to provide a benefit with acceptable risk. Pre-therapy workup, therapy planning and intra-arterial infusion of 90Y-microspheres procedure require an experienced and synergic team formed by nuclear medicine physician, interventional radiologist and medical physicist. A personalized therapeutic plan with a tailored target volume and prescribed dose should be developed for each patient after analysis of all clinical, laboratory and multimodality imaging data. Both efficacy and safety will result improved as the patient’s selection will be more appropriate and delivery technique accurate.

Keyword

Radioembolization Hepatic metastases Yttrium-90 Microspheres Liver SIRT TARE 

References

  1. 1.
    Cosimelli M, Mancini R, Carpanese L, Sciuto R, Pizzi G, Pattaro G, et al. Integration of radioembolisation into multimodal treatment of liver-dominant metastatic colorectal cancer. Expert Opin Ther Targets. 2012;16(Suppl 2):S11–6.  https://doi.org/10.1517/14728222.2011.647811. PubMedCrossRefGoogle Scholar
  2. 2.
    Mahnken AH. Current status of transarterial radioembolization. World J Radiol. 2016;8(5):449–59.  https://doi.org/10.4329/wjr.v8.i5.449. PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Lien WM, Ackerman NB. The blood supply of experimental liver metastases. II. A microcirculatory study of the normal and tumor vessels of the liver with the use of perfused silicone rubber. Surgery. 1970;68(2):334–40.PubMedGoogle Scholar
  4. 4.
    Lewandowski RJ, Salem R. Yttrium-90 Radioembolization of hepatocellular carcinoma and metastatic disease to the liver. Semin Interv Radiol. 2006;23(1):64–72.  https://doi.org/10.1055/s-2006-939842. CrossRefGoogle Scholar
  5. 5.
    Geschwind JFH, Salem R, Carr BI, Soulen MC, Thurston KG, Goin KA, et al. Yttrium-90 microspheres for the treatment of hepatocellular carcinoma. J Gastroenterol. 2004;127:194–205.  https://doi.org/10.1053/j.gastro.2004.09.034. CrossRefGoogle Scholar
  6. 6.
    Giammarile F, Bodei L, Chiesa C, Flux G, Forrer F, Kraeber-Bodere F, et al. EANM procedure guideline for the treatment of liver cancer and liver metastases with intra-arterial radioactive compounds. Eur J Nucl Med Mol Imaging. 2011;38(7):1393–406.  https://doi.org/10.1007/s00259-011-1812-2.PubMedCrossRefGoogle Scholar
  7. 7.
    van Hazel GA, Heinemann V, Sharma NK, et al. SIRFLOX: randomized phase III trial comparing first-line mFOLFOX6 (plus or minus bevacizumab) versus mFOLFOX6 (plus or minus bevacizumab) plus selective internal radiation therapy in patients with metastatic colorectal cancer. J Clin Oncol. 2016;34:1723–31.  https://doi.org/10.1200/JCO.2015.66.1181.PubMedCrossRefGoogle Scholar
  8. 8.
    Cosimelli M, Golfieri R, Cagol PP, Carpanese L, Sciuto R, Maini CL, Italian Society of Locoregional Therapies in Oncology (SITILO), et al. Multi-centre phase II clinical trial of yttrium-90 resin microspheres alone in unresectable, chemotherapy refractory colorectal liver metastases. Br J Cancer. 2010;103(3):324–31.  https://doi.org/10.1038/sj.bjc.6605770. PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Van Hazel G, Blackwell A, Anderson J, Price D, Moroz P, Bower G, et al. Randomised phase 2 trial of SIR-spheres plus fluorouracil/leucovorin chemotherapy versus fluorouracil/leucovorin chemotherapy alone in advanced colorectal cancer. J Surg Oncol. 2004;88(2):78–85.  https://doi.org/10.1002/jso.20141.PubMedCrossRefGoogle Scholar
  10. 10.
    Gray B, Van Hazel G, Hope M, Burton M, Moroz P, Anderson J, et al. Randomised trial of SIR-spheres plus chemotherapy vs. chemotherapy alone for treating patients with liver metastases from primary large bowel cancer. Ann Oncol. 2001;12(12):1711–20.PubMedCrossRefGoogle Scholar
  11. 11.
    Lim L, Gibbs P, Yip D, Shapiro JD, Dowling R, Smith D, et al. A prospective evaluation of treatment with selective internal radiation therapy (SIR-spheres) in patients with unresectable liver metastases from colorectal cancer previously treated with 5-FU based chemotherapy. BMC Cancer. 2005;5:132.  https://doi.org/10.1186/1471-2407-5-132.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Van Hazel GA, Pavlakis N, Goldstein D, Olver Ian N, Tapner MJ, Price D, et al. Treatment of fluorouracil-refractory patients with liver metastases from colorectal cancer by using yttrium-90 resin microspheres plus concomitant systemic irinotecan chemotherapy. J Clin Oncol. 2009;27:4089–95.PubMedCrossRefGoogle Scholar
  13. 13.
    Seidensticker R, Denecke T, Kraus P, Seidensticker M, Mohnike K, Fahlke J, et al. Matched-pair comparison of radioembolization plus best supportive care vs. best supportive care alone for chemotherapy refractory liver-dominant colorectal metastases. Cardiovasc Intervent Radiol. 2012;35:1066–73.  https://doi.org/10.1007/s00270-011-0234-7.PubMedCrossRefGoogle Scholar
  14. 14.
    Hendlisz A, Van den Eynde M, Peeters M, Maleux G, Lambert B, Vannoote J, et al. Phase III trial comparing protracted intravenous fluorouracil infusion alone or with yttrium-90 resin microspheres radioembolization for liver-limited metastatic colorectal cancer refractory to standard chemotherapy. J Clin Oncol. 2010;28:3687–94.  https://doi.org/10.1200/JCO.2010.28.5643.PubMedCrossRefGoogle Scholar
  15. 15.
    Sharma RA, Van Hazel GA, Morgan B, Berry DP, Blanshard K, Price D, et al. Radioembolization of liver metastases from colorectal cancer using yttrium-90 microspheres with concomitant systemic oxaliplatin, fluorouracil, and leucovorin chemotherapy. J Clin Oncol. 2007;25(9):1099–106.PubMedCrossRefGoogle Scholar
  16. 16.
    Sofocleous CT, Garcia AR, Pandit-Taskar N, Do KG, Brody LA, Petre EN, et al. Phase I trial of selective internal radiation therapy for chemorefractory colorectal cancer liver metastases progressing after hepatic arterial pump and systemic chemotherapy. Clin Colorectal Cancer. 2014;13(1):27–36.  https://doi.org/10.1016/j.clcc.2013.11.010.PubMedCrossRefGoogle Scholar
  17. 17.
    Van Cutsem E, Cervantes A, Adam R, Sobrero A, Van Krieken JH, Aderka D, et al. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Ann Oncol. 2016;27:1386–422.  https://doi.org/10.1093/annonc/mdw235.PubMedCrossRefGoogle Scholar
  18. 18.
    Garlipp B, de Baere T, Damm R, Irmscher R, van Buskirk M, Stübs P, et al. Left-liver hypertrophy after therapeutic right-liver radioembolization is substantial but less than after portal vein embolization. Hepatology. 2014;59:1864–73.  https://doi.org/10.1002/hep.26947.PubMedCrossRefGoogle Scholar
  19. 19.
    Braat MN, Samin M, van den Bosch MA, Lam MG. The role of 90-Y radioembolization in downstaging primary and secondary hepatic malignancies: a systematic review. Clin Transl Imaging. 2016;4:283–95.  https://doi.org/10.1007/s40336-016-0172-0.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Dutton SJ, Kenealy N, Love SB, Wasan HS, Sharma RA. FOXFIRE protocol: an open-label, randomised, phase III trial of 5-fluorouracil, oxaliplatin and folinic acid (OxMdG) with or without interventional selective internal radiation therapy (SIRT) as first-line treatment for patients with unresectable liver-only or liver-dominant metastatic colorectal cancer. BMC Cancer. 2014;14:497.  https://doi.org/10.1186/1471-2407-14-497.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Virdee PS, Moschandreas J, Gebski V, Love SB, Francis EA, Phil D, et al. Protocol for combined analysis of FOXFIRE, SIRFLOX, and FOXFIRE-global randomized phase III trials of chemotherapy +/− selective internal radiation therapy as first-line treatment for patients with metastatic colorectal cancer. JMIR Res Protoc. 2017;6(3):e43.  https://doi.org/10.2196/resprot.7201.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Zurkiya O, Ganguli S. Beyond hepatocellular carcinoma and colorectal metastasis: the expanding applications of radioembolization. Front Oncol. 2014;4:150.  https://doi.org/10.3389/fonc.2014.00150. PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Sato KT, Lewandowski RJ, Mulcahy MF, Atassi B, Ryu RK, Gates VL, et al. Unresectable chemorefractory liver metastases: radioembolization with 90Y microspheres-safety, efficacy, and survival. Radiology. 2008;247:507–15.  https://doi.org/10.1148/radiol.2472062029. PubMedCrossRefGoogle Scholar
  24. 24.
    King JMPH, Quinn RMB, Glenn DM, Janssen J, Tong D, Liaw W, et al. Radioembolization with selective internal radiation microspheres for neuroendocrine liver metastases. Cancer. 2008;113:921–9.  https://doi.org/10.1002/cncr.23685.PubMedCrossRefGoogle Scholar
  25. 25.
    Saxena A, Chua TC, Bester L, Kokandi A, Morris DL. Factors predicting response and survival after yttrium-90 radioembolization of unresectable neuroendocrine tumor liver metastases: a critical appraisal of 48 cases. Ann Surg. 2010;251:910–6.  https://doi.org/10.1097/SLA.0b013e3181d3d24a.PubMedCrossRefGoogle Scholar
  26. 26.
    Cao CQ, Yan TD, Bester L, Liauw W, Morris L. Radioembolization with yttrium microspheres for neuroendocrine tumor liver metastases. Br J Surg. 2010;97:537–43.  https://doi.org/10.1002/bjs.6931.PubMedCrossRefGoogle Scholar
  27. 27.
    Paprottka PM, Hoffmann RT, Haug A, Sommer WH, Raessler F, Trumm CG, et al. Radioembolization of symptomatic, unresectable neuroendocrine hepatic metastases using yttrium-90 microspheres. Cardiovasc Intervent Radiol. 2012;35(2):334–42.  https://doi.org/10.1007/s00270-011-0248-1.PubMedCrossRefGoogle Scholar
  28. 28.
    Memon K, Lewandowski RJ, Mulcahy MF, Riaz A, Ryu RK, Sato KT, et al. Radioembolization for neuroendocrine liver metastases: safety, imaging, and long-term outcomes. Int J Radiat Oncol Biol Phys. 2012;83(3):887–94.  https://doi.org/10.1016/j.ijrobp.2011.07.041.PubMedCrossRefGoogle Scholar
  29. 29.
    Kennedy AS, Dezarn WA, McNeillie P, Coldwell D, Nutting C, Carter D, et al. Radioembolization for unresectable neuroendocrine hepatic metastases using resin 90Y-microspheres: early results in 148 patients. Am J Clin Oncol. 2008;31(3):271–9.  https://doi.org/10.1097/COC.0b013e31815e4557.PubMedCrossRefGoogle Scholar
  30. 30.
    Ceelen F, Theisen D, de Albéniz XG, Auernhammer CJ, Haug AR, D’Anastasi M, et al. Towards new response criteria in neuroendocrine tumors: which changes in MRI parameters are associated with longer progression-free survival after radioembolization of liver metastases? J Magn Reson Imaging. 2015;41(2):361–8.  https://doi.org/10.1002/jmri.24569.PubMedCrossRefGoogle Scholar
  31. 31.
    Ezziddin S, Meyer C, Kahancova S, Haslerud T, Willinek W, Wilhelm K, et al. Biersack HJ90Y radioembolization after radiation exposure from peptide receptor radionuclide therapy. J Nucl Med. 2012;53(11):1663–9.  https://doi.org/10.2967/jnumed.112.107482. PubMedCrossRefGoogle Scholar
  32. 32.
    Barbier CE, Garske-Román U, Sandström M, Nyman R, Granberg D. Selective internal radiation therapy in patients with progressive neuroendocrine liver metastases. Eur J Nucl Med Mol Imaging. 2016;43(8):1425–31.  https://doi.org/10.1007/s00259-015-3264-6.PubMedCrossRefGoogle Scholar
  33. 33.
    Filippi L, Scopinaro F, Pelle G, Cianni R, Salvatori R, Schillaci O, et al. Molecular response assessed by (68)Ga-DOTANOC and survival after (90)Y microsphere therapy in patients with liver metastases from neuroendocrine tumors. Eur J Nucl Med Mol Imaging. 2016;43(3):432–40.  https://doi.org/10.1007/s00259-015-3178-3. PubMedCrossRefGoogle Scholar
  34. 34.
    Peker A, Çiçek O, Soydal Ç, Küçük NÖ, Bilgiç S. Radioembolization with yttrium-90 resin microspheres for neuroendocrine tumor liver metastases. Diagn Interv Radiol. 2015;21(1):54–9.  https://doi.org/10.5152/dir.2014.14036.PubMedCrossRefGoogle Scholar
  35. 35.
    Kennedy A, Bester L, Salem R, Sharma RA, Parks RW, Ruszniewski P, NET-Liver-Metastases Consensus Conference. Role of hepatic intra-arterial therapies in metastatic neuroendocrine tumors (NET): guidelines from the NET-liver-metastases consensus conference. HPB (Oxford). 2015;17(1):29–37.  https://doi.org/10.1111/hpb.12326.CrossRefGoogle Scholar
  36. 36.
    Fan KY, Wild AT, Halappa VG, Kumar R, Ellsworth S, Ziegler M, et al. Neuroendocrine tumor liver metastases treated with yttrium-90 radioembolization. Contemp Clin Trials. 2016;50:143–9.  https://doi.org/10.1016/j.cct.2016.08.001.PubMedCrossRefGoogle Scholar
  37. 37.
    Cianni R, Pelle G, Notarianni E, Saltarelli A, Rabuffi P, Bagni O, et al. Radioembolisation with (90)Y-labelled resin microspheres in the treatment of liver metastasis from breast cancer. Eur Radiol. 2013;23(1):182–9.  https://doi.org/10.1007/s00330-012-2556-5.PubMedCrossRefGoogle Scholar
  38. 38.
    Coldwell DM, Kennedy AS, Nutting CW. Use of yttrium-90 microspheres in the treatment of unresectable hepatic metastases from breast cancer. Int J Radiat Oncol Biol Phys. 2007;69(3):800–4.  https://doi.org/10.1016/j.ijrobp.2007.03.056.PubMedCrossRefGoogle Scholar
  39. 39.
    Haug AR, Tiega Donfack BP, Trumm C, Zech CJ, Michl M, Laubender RP, et al. 18F-FDG PET/CT predicts survival after radioembolization of hepatic metastases from breast cancer. J Nucl Med. 2012;53(3):371–7.  https://doi.org/10.2967/jnumed.111.096230.PubMedCrossRefGoogle Scholar
  40. 40.
    Saxena A, Kapoor J, Meteling B, Morris DL, Bester L. Yttrium-90 radioembolization for unresectable, chemoresistant breast cancer liver metastases: a large single-center experience of 40 patients. Ann Surg Oncol. 2014;21(4):1296–303.  https://doi.org/10.1245/s10434-013-3436-1.PubMedCrossRefGoogle Scholar
  41. 41.
    Fendler WP, Lechner H, Todica A, Paprottka KJ, Paprottka PM, Jakobs TF, et al. Safety, efficacy, and prognostic factors after Radioembolization of hepatic metastases from breast cancer: a large single-center experience in 81 patients. J Nucl Med. 2016;57(4):517–23.  https://doi.org/10.2967/jnumed.115.165050.PubMedCrossRefGoogle Scholar
  42. 42.
    Michl M, Haug AR, Jakobs TF, Paprottka P, Hoffmann RT, Bartenstein P, et al. Radioembolization with Yttrium-90 microspheres (SIRT) in pancreatic cancer patients with liver metastases: efficacy, safety and prognostic factors. Oncology. 2014;86(1):24–32.  https://doi.org/10.1159/000355821.PubMedCrossRefGoogle Scholar
  43. 43.
    Gonsalves CF, Eschelman DJ, Sullivan KL, Anne PR, Doyle L, Sato T. Radioembolization as salvage therapy for hepatic metastasis of uveal melanoma: a single-institution experience. AJR Am J Roentgenol. 2011;196(2):468–73.  https://doi.org/10.2214/AJR.10.4881.PubMedCrossRefGoogle Scholar
  44. 44.
    Eldredge-Hindy H, Ohri N, Anne PR, Eschelman D, Gonsalves C, Intenzo C, et al. Yttrium-90 microsphere brachytherapy for liver metastases from uveal melanoma: clinical outcomes and the predictive value of Fluorodeoxyglucose positron emission tomography. Am J Clin Oncol. 2016;39(2):189–95.  https://doi.org/10.1097/COC.0000000000000033.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Klingenstein A, Haug AR, Zech CJ, Schaller UC. Radioembolization as locoregional therapy of hepatic metastases in uveal melanoma patients. Cardiovasc Intervent Radiol. 2013;36(1):158–65.  https://doi.org/10.1007/s00270-012-0373-5.PubMedCrossRefGoogle Scholar
  46. 46.
    Melucci E, Cosimelli M, Carpanese L, Pizzi G, Izzo F, Fiore F, Italian Society of Locoregional Therapies in Oncology (S.I.T.I.L.O.), et al. Decrease of survivin, p53 and Bcl-2 expression in chemorefractory colorectal liver metastases may be predictive of radiosensivity radiosensivity after radioembolization with yttrium-90 resin microspheres. J Exp Clin Cancer Res. 2013;32:13.  https://doi.org/10.1186/1756-9966-32-13. PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Dendy MS, Ludwig JM, Kim HS. Predictors and prognosticators for survival with Yttrium-90 radioembolization therapy for unresectable colorectal cancer liver metastasis. Oncotarget. 2017;8:37912.  10.18632/oncotarget.16007.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Gulec SA, Selwyn R, Weiner R, et al. Nuclear medicine guidelines for radiomicrosphere therapy using Y-90 microspheres in patients with primary and metastatic liver cancer. J Interv Oncol. 2009;2:26–39.Google Scholar
  49. 49.
    Fendler WP, Philippe Tiega DB, Ilhan H, Paprottka PM, Heinemann V, Jakobs TF, et al. Validation of several SUV-based parameters derived from 18F-FDG PET for prediction of survival after SIRT of hepatic metastases from colorectal cancer. J Nucl Med. 2013;54(8):1202–8.  https://doi.org/10.2967/jnumed.112.116426.PubMedCrossRefGoogle Scholar
  50. 50.
    Powerski MJ, Erxleben C, Scheurig-Münkler C, et al. Anatomic variants of arteries often coil-occluded prior to hepatic radioembolization. Acta Radiol. 2015;56:159–65.  https://doi.org/10.1177/0284185114522148.PubMedCrossRefGoogle Scholar
  51. 51.
    van den Hoven AF, Smits MLJ, de Keizer B, et al. Identifying aberrant hepatic arteries prior to intra-arterial radioembolization. Cardiovasc Intervent Radiol. 2014;37:1482–93.  https://doi.org/10.1007/s00270-014-0845-x.PubMedCrossRefGoogle Scholar
  52. 52.
    Favelier S, Germain T, Genson PY, et al. Anatomy of liver arteries for interventional radiology. Diagn Interv Imaging. 2014;96:537–46.  https://doi.org/10.1016/j.diii.2013.12.001.PubMedCrossRefGoogle Scholar
  53. 53.
    Bilbao JI, Garrastachu P, Herraiz MJ, et al. Safety and efficacy assessment of flow redistribution by occlusion of intrahepatic vessels prior to radioembolization in the treatment of liver tumors. Cardiovasc Intervent Radiol. 2010;33(3):523–53.  https://doi.org/10.1007/s00270-009-9717-1.PubMedCrossRefGoogle Scholar
  54. 54.
    Burgmans MC, Kao YH, Irani FG, et al. Radioembolization with infusion of yttrium-90 microspheres into a right inferior phrenic artery with hepatic tumor supply is feasible and safe. J Vasc Interv Radiol. 2012;23(10):1294–301.  https://doi.org/10.1016/j.jvir.2012.07.009.PubMedCrossRefGoogle Scholar
  55. 55.
    Abdelmaksoud MH, Louie JD, Kothary N, et al. Embolization of parasitized extrahepatic arteries to reestablish intrahepatic arterial supply to tumors before yttrium-90 radioembolization. J Vasc Interv Radiol. 2011;22(10):1355–62.  https://doi.org/10.1016/j.jvir.2011.06.007.PubMedCrossRefGoogle Scholar
  56. 56.
    Hamoui N, Minocha J, Memon K, et al. Prophylactic embolization of the gastroduodenal and right gastric arteries is not routinely necessary before radioembolization with glass microspheres. J Vasc Interv Radiol. 2013;24(11):1743–5.  https://doi.org/10.1016/j.jvir.2013.07.011.PubMedCrossRefGoogle Scholar
  57. 57.
    Abdelmaksoud MH, Hwang GL, Louie JD, et al. Development of new hepaticoenteric collateral pathways after hepatic arterial skeletonization in preparation for yttrium-90 radioembolization. J Vasc Interv Radiol. 2010;21:1385–95.  https://doi.org/10.1016/j.jvir.2010.04.030.PubMedCrossRefGoogle Scholar
  58. 58.
    Tacher V, Radaelli A, Lin M, Geschwind JF. How I do it: cone-beam CT during transarterial chemoembolization for liver cancer. Radiology. 2015;274:320–34.  https://doi.org/10.1148/radiol.14131925.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Louie JD, Kothary N, Kuo WT, et al. Incorporating cone-beam CT into the treatment planning for yttrium-90 radioembolization. J Vasc Interv Radiol. 2009;20:606–13.  https://doi.org/10.1016/j.jvir.2009.01.021.PubMedCrossRefGoogle Scholar
  60. 60.
    Padia SA, Lewandowski RJ, Johnson GE, Sze DY, Ward TJ, Gaba RC, et al. Radioembolization of hepatic malignancies: background, quality improvement guidelines, and future directions. J Vasc Interv Radiol. 2016.  https://doi.org/10.1016/j.ivir.2016.09.024.
  61. 61.
    Wright CL, Werner JD, Tran JM, et al. Radiation pneumonitis following yttrium- 90 radioembolization: case report and literature review. J Vasc Interv Radiol. 2012;23:669–74.  https://doi.org/10.1016/j.jvir.2012.01.059.PubMedCrossRefGoogle Scholar
  62. 62.
    Sirtex Medical Limited. North Sidney, Australia. SIR-spheres training program: physicians and institutions. version TRN-RW-05 (undated).Google Scholar
  63. 63.
    Salem R, Thurston KG. Radioembolization with 90yttrium microspheres: a state-of-the-art brachytherapy treatment for primary and secondary liver malignancies. Part 1: technical and methodologic considerations. J Vasc Interv Radiol. 2006;17:1251–78.  https://doi.org/10.1097/01.RVI.0000233785.75257.9A. PubMedCrossRefGoogle Scholar
  64. 64.
    Salem R, Parikh P, Atassi B, Lewandowski RJ, Ryu RK, Sato KT, et al. Incidence of radiation pneumonitis after hepatic intra-arterial radiotherapy with yttrium-90 microspheres assuming uniform lung distribution. Am J Clin Oncol. 2008;31:431–8.  https://doi.org/10.1097/COC.0b013e318168ef65.PubMedCrossRefGoogle Scholar
  65. 65.
    Barentsz MW, Vente MA, Lam MG, et al. Technical solutions to ensure safe yttrium-90 radioembolization in patients with initial extrahepatic deposition of 99mtechnetium-albumin macroaggregates. Cardiovasc Intervent Radiol. 2011;34:1074–9.  https://doi.org/10.1007/s00270-010-0088-4.PubMedCrossRefGoogle Scholar
  66. 66.
    Dudeck O, Wilhelmsen S, Ulrich G, et al. Effectiveness of repeat angiographic assessment in patients designated for radioembolization using yttrium-90 microspheres with initial extrahepatic accumulation of technitium-99m macroaggregated albumin: a single center’s experience. Cardiovasc Intervent Radiol. 2012;35:1083–93.  https://doi.org/10.1007/s00270-011-0252-5.PubMedCrossRefGoogle Scholar
  67. 67.
    Ho S, Lau WY, Leung TW, Chan M, Ngar YK, Johnson PJ, et al. Partition model for estimating radiation doses from yttrium-90 microspheres in treating hepatic tumors. Eur J Nucl Med. 1996;23:947–52.PubMedCrossRefGoogle Scholar
  68. 68.
    Ho S, Lau WY, Leung TW, Chan M, Chan KW, Lee WY, Johnson PJ, Li AK, et al. Tumor-to-normal uptake ratio of 90Y microspheres in hepatic cancer assessed with 99mTc macroaggregated albumin. Br J Radiol. 1997;70:823–8.  https://doi.org/10.1259/bjr.70.836.9486047.PubMedCrossRefGoogle Scholar
  69. 69.
    Flamen P, Vanderlinden B, Delatte P. Multimodality imaging can predict the metabolic response of unresectable colorectal liver metastases to radioembolization therapy with yttrium-90 labeled resin microspheres. Phys Med Biol. 2008;53:6591–603.  https://doi.org/10.1088/0031-9155/53/22/019.PubMedCrossRefGoogle Scholar
  70. 70.
    Garin E, Rolland Y, Lenoir L, Pracht M, Mesbah H, Porée P, Laffont S, Clement B, Raoul JL, Boucher E. Utility of quantitative Tc-MAA SPET/CT for yttrium-labelled microsphere treatment planning: calculating vascularized hepatic volume and dosimetric approach. Int J Mol Imaging. 2011;2011:398051.  https://doi.org/10.1155/2011/398051.
  71. 71.
    Dezarn WA. Quality assurance issues for therapeutic application of radioactive microspheres. Int J Radiat Oncol Biol Phys. 2008;71(Suppl. 1):S147–51.  https://doi.org/10.1016/j.ijrobp.2007.05.094. PubMedCrossRefGoogle Scholar
  72. 72.
    Gil-Alzugaray B, Chopitea A, Inarrairaegui M, et al. Prognostic factors and prevention of radioembolization-induced liver disease. Hepatology. 2013;57(3):1078–87.  https://doi.org/10.1002/hep.26191.PubMedCrossRefGoogle Scholar
  73. 73.
    Piana PM, Gonsalves CF, Sato T, et al. Toxicities after radioembolization with yttrium-90 SIR-spheres: incidence and contributing risk factors at a single center. J Vasc Interv Radiol. 2011;22(10):1373–9.  https://doi.org/10.1016/j.jvir.2011.06.006.PubMedCrossRefGoogle Scholar
  74. 74.
    Vouche M, Lewandowski RJ, Atassi R, et al. Radiation lobectomy: time-dependent analysis of future liver remnant volume in unresectable liver cancer as a bridge to resection. J Hepatol. 2013;59:1029–36.  https://doi.org/10.1016/j.jhep.2013.06.015.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Riaz A, Gates VL, Atassi B, et al. Radiation segmentectomy: a novel approach to increase safety and efficacy of radioembolization. Int J Radiat Oncol Biol Phys. 2011;79:163–71.  https://doi.org/10.1016/j.ijrobp.2009.10.062.PubMedCrossRefGoogle Scholar
  76. 76.
    Lam MG, Goris ML, Iagaru AH, Mittra ES, Louie JD, Sze DY. Prognostic utility of 90Y radioembolization dosimetry based on fusion 99mTc-macroaggregated albumin-99mTc-sulfur colloid SPECT. J Nucl Med. 2013;54(12):2055–61.  https://doi.org/10.2967/jnumed. 113.123257.PubMedCrossRefGoogle Scholar
  77. 77.
    Strigari L, Sciuto R, Rea S, et al. Efficacy and toxicity related to treatment of hepatocellular carcinoma with 90Y-SIR spheres: radiobiologic considerations. J Nucl Med. 2010;51:1377–85.  https://doi.org/10.2967/jnumed.110.075861.PubMedCrossRefGoogle Scholar
  78. 78.
    Campbell AM, Bailey IH, Burton MA. Tumor dosimetry in human liver following hepatic yttrium-90 microsphere therapy. Phys Med Biol. 2001;46:487–98.PubMedCrossRefGoogle Scholar
  79. 79.
    Morris-Stiff G, Tan YM, Vauthey JN. Hepatic complications following preoperative chemotherapy with oxaliplatin or irinotecan for hepatic colorectal metastases. Eur J Surg Oncol. 2008;34:609–14.  https://doi.org/10.1016/j.ejso.2007.07.007.PubMedCrossRefGoogle Scholar
  80. 80.
    Lam MG, Louie JD, Abdelmaksoud MH, Fisher GA, Cho-Phan CD, Sze DY. Limitations of body surface area-based activity calculation for radioembolization of hepatic metastases in colorectal cancer. J Vasc Interv Radiol. 2014;25:1085–93.  https://doi.org/10.1016/j.jvir.2013.11.018.PubMedCrossRefGoogle Scholar
  81. 81.
    Kao YH, Tan EH, Ng CE, Goh SW. Clinical implications of the body surface area method versus partition model dosimetry for yttrium-90 radioembolization using resin microspheres: a technical review. Ann Nucl Med. 2011;25:455–61.  https://doi.org/10.1007/s12149-011-0499-6.PubMedCrossRefGoogle Scholar
  82. 82.
    Cremonesi M, Chiesa C, Strigari L, et al. Radioembolization of hepatic lesions from a radiobiology and dosimetric perspective. Front Oncol. 2014;4:210.  https://doi.org/10.3389/fonc.2014.00210.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Kao YH, Hock Tan AE, Burgmans MC, Irani FG, Khoo LS, Gong Lo RH, et al. Image-guided personalized predictive dosimetry by artery-specific SPET/CT partition modeling for safe and effective 90Y radioembolization. J Nucl Med. 2012;53:559–66.  https://doi.org/10.2967/jnumed.111.097469.
  84. 84.
    Paprottka KJ, Lehner S, Fendler WP, Ilhan H, Rominger A, Sommer W, et al. Reduced periprocedural analgesia after replacement of water for injection with glucose 5% solution as the infusion medium for 90Y-resin microspheres. J Nucl Med. 2016;57:1679–84.  https://doi.org/10.2967/jnumed.115.170779.PubMedCrossRefGoogle Scholar
  85. 85.
    Karunanithy N, Gordon F, Hodolic M, Al-Nahhas A, Wasan HS, Habib N, et al. Embolization of hepatic arterial branches to simplify hepatic blood flow before yttrium90 radioembolization: a useful technique in the presence of challenging anatomy. Cardiovasc Intervent Radiol. 2011;34:287–94.  https://doi.org/10.1007/s00270-010- 9951-6.PubMedCrossRefGoogle Scholar
  86. 86.
    Ray CE Jr, Gaba RC, Knuttinen MG, Minocha J, Bui JT. Multiple arteries supplying a single tumor vascular distribution: microsphere administration options for the interventional radiologist performing radioembolization. Semin Intervent Radiol. 2014;31:203–6.  https://doi.org/10.1055/s-0034-1373794. PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Murthy R, Brown DB, Salem R, et al. Gastrointestinal complications associated with hepatic arterial yttrium-90 microsphere therapy. J Vasc Interv Radiol. 2007;18:553–62.  https://doi.org/10.1016/j.jvir.2007.02.002.PubMedCrossRefGoogle Scholar
  88. 88.
    Minarik D, Sjogreen GK, Ljungberg M. Evaluation of quantitative 90Y SPECT based on experimental phantom studies. Phys Med Biol. 2008;53:5689–703.PubMedCrossRefGoogle Scholar
  89. 89.
    Nickles RJ, Roberts AD, Nye JA, et al. Assaying and PET imaging of yttrium-90: 1.34 ppm.0. In: Conference record of IEEE nuclear science symposium and medical imaging conference; 2004. p. 3412–4.Google Scholar
  90. 90.
    Kao YH, Steinberg JD, Tay YS, Lim GK, Yan J, Townsend DW, et al. Post-radioembolization yttrium-90 PET/CT – part 1: diagnostic reporting. EJNMMI Res. 2013;3:56.  https://doi.org/10.1186/2191-219X-3-56.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Riaz A, Lewandowski RJ, Kulik LM, Mulcahy MF, Sato KT, Ryu RK, et al. Complications following radioembolization with yttrium-90 microspheres: a comprehensive literature review. J Vasc Interv Radiol. 2009;20:1121–30.  https://doi.org/10.1016/j.jvir.2009.05.030.PubMedCrossRefGoogle Scholar
  92. 92.
    Kennedy AS, Coldwell D, Nutting C, et al. Resin 90Y-microsphere brachytherapy for unresectable colorectal liver metastases: modern USA experience. Int J Radiat Oncol Biol Phys. 2006;65:412–25.  https://doi.org/10.1016/j.ijrobp.2005.12.051.PubMedCrossRefGoogle Scholar
  93. 93.
    Memon K, Kulik L, Lewandowski RJ, et al. Radiographic response to locoregional therapy in hepatocellular carcinoma predicts patient survival times. Gastroenterology. 2011;141:526–35.  https://doi.org/10.1053/j.gastro.2011.04.054.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Keppke AL, Salem R, Reddy D, Huang J, Jin J, Larson AC, et al. Imaging of hepatocellular carcinoma after treatment with yttrium-90 microspheres. AJR Am J Roentgenol. 2007;188(3):768–75.  https://doi.org/10.2214/AJR.06.0706.PubMedCrossRefGoogle Scholar
  95. 95.
    Bester L, Hobbins PG, Wang SC, Salem R. Imaging characteristics following 90yttrium microsphere treatment for unresectable liver cancer. J Med Imaging Radiat Oncol. 2011;55(2):111–8.  https://doi.org/10.1111/j.1754-9485.2011.02241.x.PubMedCrossRefGoogle Scholar
  96. 96.
    Zerizer I, Al-Nahhas A, Towey D, Tait P, Ariff B, Wasan H, Hatice G, Habib N, Barwick T. The role of early (18)F-FDG PET/CT in prediction of progression-free survival after (90)Y radioembolization: comparison with RECIST and tumor density criteria. Eur J Nucl Med Mol Imaging. 2012;39:1391–9.  https://doi.org/10.1007/s00259-012-2149-1.PubMedCrossRefGoogle Scholar
  97. 97.
    Miller FH, Keppke AL, Reddy D, et al. Response of liver metastases after treatment with yttrium-90 microspheres: role of size, necrosis and PET. AJR Am J Roentgenol. 2007;188:776–83.  https://doi.org/10.2214/AJR.06.0707.PubMedCrossRefGoogle Scholar
  98. 98.
    Obrzut S, McCammack K, Badran KW, Balistreri A, Ou E, Nguyen BJ, Hoh CK, Rose SC. Prognostic value of post-yttrium 90 radioembolization therapy 18F-fluorodeoxyglucose positron emission tomography in patients with liver tumors. Clin Imaging. 2017;42:43–9.  https://doi.org/10.1016/j.clinimag.2016.11.009.PubMedCrossRefGoogle Scholar
  99. 99.
    Sabet A, Meyer C, Aouf A, Sabet A, Ghamari S, Pieper CC, Mayer K, Biersack HJ, Ezziddin S. Early post-treatment FDG PET predicts survival after 90Y microsphere radioembolization in liver-dominant metastatic colorectal cancer. Eur J Nucl Med Mol Imaging. 2015;42:370–6.  https://doi.org/10.1007/s00259-014-2935-z.PubMedCrossRefGoogle Scholar
  100. 100.
    Tochetto SM, Rezai P, Rezvani M, Nikolaidis P, Berggruen S, Atassi B, Salem R, Yaghmai V. Does multidetector CT attenuation change in colon cancer liver metastases treated with 90Y help predict metabolic activity at FDG PET? Radiology. 2010;255:164–72.  https://doi.org/10.1148/radiol.09091028.PubMedCrossRefGoogle Scholar
  101. 101.
    Zarva A, Mohnike K, Damm R, et al. Safety of repeated radioembolizations in patients with advanced primary and secondary liver tumors and progressive disease after first selective internal radiotherapy. J Nucl Med. 2014;55:360–6.  https://doi.org/10.2967/jnumed.113.127662.PubMedCrossRefGoogle Scholar
  102. 102.
    Lam MG, Louie JD, Iagaru AH, Goris ML, Sze DY. Safety of repeated yttrium-90 radioembolization. Cardiovasc Intervent Radiol. 2013;36:1320–8.  https://doi.org/10.1007/s00270-013-0547-9.PubMedCrossRefGoogle Scholar
  103. 103.
    National Cancer Institute. Common terminology criteria for adverse events (CTCAE) v4.03. NIH Publication No. 09-5410. 2010. Available at: https://evs.nci.nih.gov/ftp1/CTCAE/CTCAE_4.03_2010-06-14_QuickRe ference_5x7.pdf. Accessed 27 October 2016.
  104. 104.
    Hickey R, Lewandowski RJ. Hepatic radioembolization complicated by radiation cholecystitis. Semin Intervent Radiol. 2011;28:230–3.  https://doi.org/10.1055/s-0031-1280671.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Leong QM, Lai HK, Lo RG, Teo TK, Goh A, Chow PK. Radiation dermatitis following radioembolization for hepatocellular carcinoma: a case for prophylactic embolization of a patent falciform artery. J Vasc Interv Radiol. 2009;20:833–6.  https://doi.org/10.1016/j.jvir.2009.03.011.PubMedCrossRefGoogle Scholar
  106. 106.
    Sangro B, Gil-Alzugaray B, Rodriguez J, et al. Liver disease induced by radioembolization of liver tumors: description and possible risk factors. Cancer. 2008;112:1538–46.PubMedCrossRefGoogle Scholar
  107. 107.
    Ingold JA, Reed GB, Kaplan HS, et al. Radiation hepatitis. Am J Roentgenol Radium Ther Nucl Med. 1965;93:200–8.PubMedGoogle Scholar
  108. 108.
    Gray BN, Burton MA, Kelleher D, et al. Tolerance of the liver to the effects of yttrium-90 radiation. Int J Radiat Oncol Biol Phys. 1990;18:619–23.PubMedCrossRefGoogle Scholar
  109. 109.
    Nosher JL, Ohman-Strickland PA, Jabbour S, Narra V, Nosher B. Changes in liver and spleen volumes and liver function after radio- embolization with yttrium-90 resin microspheres. J Vasc Interv Radiol. 2011;22:1706–13.  https://doi.org/10.1016/j.jvir.2011.08.017.PubMedCrossRefGoogle Scholar
  110. 110.
    Atassi B, Bangash AK, Lewandowski RJ, et al. Biliary sequelae following radioembolization with yttrium-90 microspheres. J Vasc Interv Radiol. 2008;19:691–7.  https://doi.org/10.1016/j.jvir.2008.01.003.PubMedCrossRefGoogle Scholar
  111. 111.
    Wiggins E, Ibrahim SM, Lewandowski RJ, Sato KT, Omary RA, Salem R. Effect of chemotherapy on hepatic vasculature in patients undergoing Y-90radioembolization for metastatic disease. J Vasc Interv Radiol. 2008;19:S48–9.  https://doi.org/10.1016/j.jvir.2007.12.138.CrossRefGoogle Scholar
  112. 112.
    Murthy R, Eng C, Krishnan S, et al. Hepatic yttrium-90 radioembolotherapy in metastatic colorectal cancer treated with cetuximab or bevacizumab. J Vasc Interv Radiol. 2007;18:1588–91.  https://doi.org/10.1016/j.jvir.2007.08.015.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Rosa Sciuto
    • 1
  • Sandra Rea
    • 1
  • Giuseppe Pizzi
    • 2
  • Giulio E. Vallati
    • 2
  • Lidia Strigari
    • 3
  1. 1.Nuclear Medicine Unit, Department of Research, Advanced Diagnostic and Innovation TechnologyRegina Elena National Cancer InstituteRomeItaly
  2. 2.Interventional Radiology Unit, Department of Research, Advanced Diagnostic and Innovation TechnologyRegina Elena National Cancer InstituteRomeItaly
  3. 3.Laboratory of Medical Physics and Expert Systems, Department of Research, Advanced Diagnostic and Innovation TechnologyRegina Elena National Cancer InstituteRomeItaly

Personalised recommendations