Advertisement

Mathematical Modelling as a Professional Activity: Lessons for the Classroom

  • Peter Frejd
Chapter
Part of the International Perspectives on the Teaching and Learning of Mathematical Modelling book series (IPTL)

Abstract

This chapter presents a discussion about similarities and differences between working with mathematical modelling in ‘school’ and mathematical modelling as a ‘professional task’ in the workplace based on empirical and theoretical research studies. Issues discussed concern goals; technology; division of labour, communication and collaboration; model construction, including the application and adaption of predefined models; projects; and risks involved in using the models. Based on this discussion and examples from innovative teaching practices, approaches to simulate modelling as a ‘professional activity’ in educational settings are explored and exemplified with a role-play activity.

Keywords

Modelling Modeller School activity Professional activity Innovative teaching methods Role-play 

References

  1. Armstrong, K. (2003). Applications of role-playing in tourism management teaching: An evaluation of a learning method. Journal of Hospitality, Leisure, Sport and Tourism Education, 2(1), 5–16.CrossRefGoogle Scholar
  2. Barbosa, J. C. (2006). Mathematical modelling in classroom: A socio-critical and discursive perspective. ZDM Mathematics Education, 38(3), 293–301.CrossRefGoogle Scholar
  3. Barbosa, J. C. (2009). Mathematical modelling, socio-critical perspective and the reflexive discussions. In M. Blomhøj & S. Carreira (Eds.), Mathematical applications and modelling in the teaching and learning of mathematics. Proceedings from topic study group 21 at ICME11 (IMFUFA tekst nr. 461–2009) (pp. 117–143). Denmark: Roskilde University.Google Scholar
  4. Belova, N., Eliks, I., & Feierabend, T. (2013). The evaluation of role-playing in the context of teaching climate change. International Journal of Science and Mathematics Education, 13(1), 165–190.Google Scholar
  5. Blum, W., & Niss, M. (1991). Applied mathematical problem solving, modelling, applications, and links to other subjects: State, trends and issues in mathematics instruction. Educational Studies in Mathematics, 22(1), 37–68.CrossRefGoogle Scholar
  6. Blum, W., Galbraith, P. L., Henn, H., & Niss, M. (Eds.). (2007). Modelling and applications in mathematics education. The 14th ICMI study. New York: Springer.Google Scholar
  7. Brasil. (1997). Parâmetros curriculares nacionais (PCNs): matemática [National curricular parameters: Mathematics]. Brasília: MECSEF.Google Scholar
  8. Burghes, D. N. (1984). Prologue. In J. S. Berry, D. N. Burghes, I. D. Huntley, D. J. G. James, & A. O. Moscardini (Eds.), Teaching and applying mathematical modelling (pp. xi–xvi). Chichester: Ellis Horwood.Google Scholar
  9. Chevallard, Y. (1991). La transposition didactique – Du savoir savant au savoir enseigné. Grenoble: La Pensée sauvage.Google Scholar
  10. Damlamian, A., Rodrigues, J. F., & Sträßer, R. (2013). Conclusion on educational interfaces between mathematics and industry. In A. Damlamian, J. F. Rodrigues, & R. Strässer (Eds.), Educational interfaces between mathematics and industry (pp. 447–452). Cham: Springer.CrossRefGoogle Scholar
  11. Department for Education. (2013). The national curriculum in England: Key stages 3 and 4 framework document. Retrieved from: https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/381754/SECONDARY_national_curriculum.pdf
  12. Department of Basic Education. (2004). National curriculum statement (NCS): Curriculum and assessment policy statement. Retrieved from: http://www.education.gov.za/Curriculum/NCSGradesR12/CAPS/tabid/420/Default.aspx
  13. Doerr, H., & Pratt, D. (2008). The learning of mathematics and mathematical modelling. In M. K. Heid & G. W. Blume (Eds.), Research synthesis. Research on technology and the teaching and learning of mathematics (Vol. 1, pp. 259–285). Charlotte: Information Age Publishing.Google Scholar
  14. Drakes, C. I. (2012). Mathematical modelling: From novice to expert. Doctoral dissertation, Simon Fraser University.Google Scholar
  15. Edwards, D., & Morton, P. C. M. (1987). Formal verbal presentation in project-based mathematical modelling. In J. S. Berry, D. N. Burghes, I. D. Huntley, D. J. G. James, & A. O. Moscardini (Eds.), Mathematical modelling courses (pp. 51–57). Chichester: Ellis Horwood.Google Scholar
  16. Frejd, P. (2013a). An analysis of mathematical modelling in Swedish textbooks in upper secondary school. Nordic Studies in Mathematics Education, 18(3), 59–95.Google Scholar
  17. Frejd, P. (2013b). Modes of modelling assessment – A literature review. Educational Studies in Mathematics, 84(3), 413–438.CrossRefGoogle Scholar
  18. Frejd, P. (2015). Mathematical modellers’ opinions on mathematical modelling in upper secondary education. In G. A. Stillman, W. Blum, & M. S. Biembengut (Eds.), Mathematical modelling in education research and practice: Cultural, social and cognitive influences (pp. 327–337). Cham: Springer.CrossRefGoogle Scholar
  19. Frejd, P., & Bergsten, C. (2016). Mathematical modelling as a professional task. Educational Studies in Mathematics, 91(1), 11–35. A doi: https://doi.org/10.1007/s10649-015-9654-7.
  20. Gainsburg, J. (2003). The mathematical behavior of structural engineers. Doctoral dissertation, Stanford University.Google Scholar
  21. Gainsburg, J. (2007a). The mathematical disposition of structural engineers. Journal for Research in Mathematics Education, 38(5), 477–506.Google Scholar
  22. Gainsburg, J. (2007b). Problem solving and learning in everyday structural engineering work. In R. A. Lesh, E. Hamilton, & J. Kaput (Eds.), Foundations for the future in mathematics education (pp. 37–56). Mahwah: Lawrence Erlbaum.Google Scholar
  23. Galbraith, P. (2013). From conference to community: An ICTMA journey – The Ken Houston inaugural lecture. In G. A. Stillman, G. Kaiser, W. Blum, & J. P. Brown (Eds.), Teaching mathematical modelling: Connecting to research and practice (pp. 27–45). Dordrecht: Springer.CrossRefGoogle Scholar
  24. Garcia, F., Gascón, J., Higueras, L., & Bosch, M. (2006). Mathematical modelling as a tool for the connection of school mathematics. ZDM Mathematics Education, 38(3), 226–246.CrossRefGoogle Scholar
  25. Geiger, V. (2013). Strässer’s didactic tetrahedron as a basis for theorising mathematical modelling activity within social contexts. In G. A. Stillman, G. Kaiser, W. Blum, & J. P. Brown (Eds.), Teaching mathematical modelling: Connecting to research and practice (pp. 107–116). Dordrecht: Springer.CrossRefGoogle Scholar
  26. Geiger, V., & Frejd, P. (2015). A reflection on mathematical modelling and applications as a field of research: Theoretical orientation and diversity. In G. A. Stillman, W. Blum, & M. S. Biembengut (Eds.), Mathematical modelling in education research and practice: Cultural, social and cognitive influences (pp. 161–171). Cham: Springer.CrossRefGoogle Scholar
  27. Ginsburg, H. (2009). Mathematical play and playful mathematics: A guide for early education. In D. Singer, R. Golinkoff, & K. Hirsh-Pasek (Eds.), Play = learning: How play motivates and enhances children’s cognitive and social- emotional growth. New York: Oxford University Press. Retrieved from: http://udel.edu/~roberta/play/Ginsburg.pdf
  28. Griffiths, R. (2010). Mathematics and play. In J. Moyle (Ed.), The excellence of play (3rd ed., pp. 169–185). Maidenhead: Open University Press.Google Scholar
  29. Heilio, M. (2013). Mathematics in industry and teacher training. In A. Damlamian, J. F. Rodrigues, & R. Strässer (Eds.), Educational interfaces between mathematics and industry (pp. 223–228). Cham: Springer.CrossRefGoogle Scholar
  30. Jablonka, E. (1996). Meta-Analyse von Zugängen zur mathematischen Modellbildung und Konsequenzen für den Unterricht [Analyses of approaches to mathematical modelling and educational consequences]. Dissertation, Transparent-Verlag, Berlin.Google Scholar
  31. Jablonka, E. (1997). What makes a model effective and useful (or not)? In S. K. Houston, W. Blum, I. D. Huntley, & N. T. Neill (Eds.), Teaching and learning mathematical modelling (pp. 39–50). Chichester: Albion.Google Scholar
  32. Jablonka, E., & Gellert, U. (2007). Mathematisation – demathematisation. In U. Gellert & E. Jablonka (Eds.), Mathematisation and demathematisation: Social, philosophical and educational ramifications (pp. 1–18). Rotterdam: Sense.Google Scholar
  33. Kaiser, G., & Sriraman, B. (2006). A global survey of international perspectives on modelling in mathematics education. ZDM Mathematics Education, 38(3), 302–310.CrossRefGoogle Scholar
  34. Kaiser, G., Bracke, M., Göttlich, S., & Kaland, C. (2013a). Authentic complex modelling problems in mathematics education. In A. Damlamian, J. F. Rodrigues, & R. Strässer (Eds.), Educational interfaces between mathematics and industry (pp. 287–297). Cham: Springer.CrossRefGoogle Scholar
  35. Kaiser, G., van der Kooij, H., & Wake, G. (2013b). Educational interfaces between mathematics and industry at school level. In A. Damlamian, J. F. Rodrigues, & R. Strässer (Eds.), Educational interfaces between mathematics and industry (pp. 263–270). Cham: Springer.CrossRefGoogle Scholar
  36. Li, T. (2013). Mathematical modelling in education is the most important educational interface between mathematics and industry. In A. Damlamian, J. F. Rodrigues, & R. Strässer (Eds.), Educational interfaces between mathematics and industry (pp. 51–58). Cham: Springer.CrossRefGoogle Scholar
  37. McGuire, J., & Priestley, P. (1981). Life after school: A social skills curriculum. Oxford: Pergamon.Google Scholar
  38. Ministry of Education. (2013). Mathematics syllabus secondary 1 to 4 N(T) course. Retrieved from: http://www.moe.gov.sg/education/syllabuses/sciences/
  39. National Governors Association Center for Best Practices and Council of Chief State School Officers [NGACBP&CCSSO]. (2010). Common core state standards for mathematics. Washington, DC: National Governors Association Center for Best Practices and Council of Chief State School Officers.Google Scholar
  40. Nestel, D., & Tierney, T. (2007). Role-play for medical students learning about communication: Guidelines for maximising benefits. BMC Medical Education, 7, 3. Retrieved from: http://www.biomedcentral.com/1472-6920/7/3.CrossRefGoogle Scholar
  41. Niss, M. A. (2015). Prescriptive modelling – challenges and opportunities. In G. A. Stillman, W. Blum, & M. S. Biembengut (Eds.), Mathematical modelling in education research and practice: Cultural, social and cognitive influences (pp. 67–79). Cham: Springer.CrossRefGoogle Scholar
  42. Noss, R., & Hoyles, C. (1996). The visibility of meanings: Modelling the mathematics of banking. International Journal of Computers for Mathematical Learning, 1(17), 3–31.Google Scholar
  43. Skolverket. (2012). Upper secondary school 2011. Retrieved from: http://www.skolverket.se/publikationer?id=2801
  44. Spandaw, J. (2011). Practical knowledge of research mathematicians, scientists, and engineers about the teaching of modelling. In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling (pp. 679–688). Dordrecht: Springer.CrossRefGoogle Scholar
  45. Speiser, B., & Walter, C. (2010). Models as tools, especially for making sense of problems. In R. Lesh, P. L. Galbraith, C. R. Haines, & A. Hurford (Eds.), Modeling students’ mathematical modeling competencies (pp. 167–172). New York: Springer.CrossRefGoogle Scholar
  46. Stillman, G., Blum, W., & Biembengut, M. S. (2015). Mathematical modelling in education research and practice: Cultural, social and cognitive influences. Cham: Springer.CrossRefGoogle Scholar
  47. Swedish Ministry of the Environment. (2012/2013). En hållbar rovdjurspolitik [Sustainable predator policy]. (SOU [Swedish Government Official Reports] 2012/2013:191). Retrieved from: http://www.regeringen.se/sb/d/16553/a/223451
  48. van Ments, M. (1999). The effective use of role-play. London: Kogan Page.Google Scholar
  49. Vos, P. (2011). What is ‘authentic’ in the teaching and learning of mathematical modelling? In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling (pp. 713–722). Dordrecht: Springer.CrossRefGoogle Scholar
  50. Vos, P. (2015). Authenticity in extra-curricular mathematics activities: Researching authenticity as a social construct. In G. A. Stillman, W. Blum, & M. S. Biembengut (Eds.), Mathematical modelling in education, research and practice: Cultural, social and cognitive influences (pp. 105–113). Cham: Springer.CrossRefGoogle Scholar
  51. Wake, G. (2014). Making sense of and with mathematics: The interface between academic mathematics and mathematics in practice. Educational Studies in Mathematics, 2(86), 271–290.CrossRefGoogle Scholar
  52. Wedege, T. (2010). Researching workers’ mathematics at work. In A. Araújo, A. Fernandes, A. Azevedo, & J. F. Rodrigues (Eds.), Proceedings of EIMI 2010 conference: Educational interfaces between mathematics and industry (pp. 565–574). Lisbon: Centro International de Matemática & Bedford, USA: COMAP.Google Scholar
  53. Willemain, T. R. (1995). Model formulation: What experts think about and when. Operations Research, 43(6), 916–932.CrossRefGoogle Scholar
  54. Williams, H. (2014). The relevance of role play to the learning of mathematics in primary classroom. Doctoral dissertation, University of Roehampton.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Peter Frejd
    • 1
  1. 1.Department of MathematicsLinköping UniversityLinköpingSweden

Personalised recommendations