Vitiligo pp 303-312 | Cite as

Cytokines, Growth Factors, and POMC Peptides

  • Markus BöhmEmail author
  • Katia Boniface
  • Silvia Moretti


The epidermis and its main constituents, keratinocytes, produce a vast repertoire of cytokines, including interleukins (IL), growth factors, colony-stimulating factors, and chemokines. Under normal circumstances most of them are not synthesized or not released, but a number of external stimuli and stressors, e.g., infections, chemicals, trauma, or ultraviolet radiation, are capable of inducing production and release of such molecules from keratinocytes. IL-6 and TNF are paracrine inhibitors of human melanocyte proliferation and melanogenesis, eliciting a dose-dependent decrease in tyrosinase activity of cultured normal human melanocytes and inhibiting melanocyte proliferation, while IFN-γ impedes maturation of the key organelle melanosome by concerted regulation of pigmentation genes. Interestingly, a higher expression of these cytokines has been demonstrated by various authors in the affected skin of vitiligo patients at both protein and transcript levels.


  1. 1.
    Uchi H, Terao H, Koga T, et al. Cytokines and chemokines in the epidermis. J Dermatol Sci. 2000;24:S29–38.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Schwartz T, Luger TA. Effect of UV irradiation on epidermal cell cytokine production. J Photochem Photobiol. 1989;B4:1–13.CrossRefGoogle Scholar
  3. 3.
    Cho D, Seung Kang J, Hoon Park J, et al. The enhanced IL-18 production by UVB irradiation requires ROI and AP-1 signaling in human keratiocyte cell line (HaCaT). Biochem Biophys Res Commun. 2002;298:289–95.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Swope VB, Abdel-Malek Z, Kassem ML, et al. Interleukin 1a and 6 and tumor necrosis factor – are paracrine inhibitors of human melanocyte proliferation and melanogenesis. J Invest Dermatol. 1991;96:180–5.CrossRefGoogle Scholar
  5. 5.
    Natarajan V, Ganju P, Singh A, et al. IFN-g signaling maintains skin pigmentation homeostasis through regulation of melanosome maturation. Proc Natl Acad Sci U S A. 2014;111:2301–6.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Moretti S, Spallanzani A, Amato L, et al. Vitiligo and epidermal microenvironment: possible involvement of keratinocyte-derived cytokines. Arch Dermatol. 2002;138:273–4.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Moretti S, Spallanzani A, Amato L, et al. New insight into the pathogenesis of vitiligo: imbalance of epidermal cytokines at sites of lesions. Pigment Cell Res. 2002;15:87–92.CrossRefGoogle Scholar
  8. 8.
    Birol A, Kisa U, Kara F, et al. Increased tumor necrosis factor alpha (TNF-a) and interleukin 1 alpha (IL-1a) levels in the lesional skin of patients with non segmental vitiligo. Int J Dermatol. 2007;45:992–3.CrossRefGoogle Scholar
  9. 9.
    Kim NH, Jeon S, Lee HJ, Lee AY. Impaired PI3K/Akt activation-mediated NF-kB inactivation under elevated TNF-a is more vulnerable to apoptosis in vitiliginous keratinocytes. J Invest Dermatol. 2007;127:2612–7.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Grimes PE, Morris R, Avaniss-Aghajani F, et al. Topical tacrolimus therapy for vitiligo: therapeutical responses and skin messenger RNA expression of proinflammatory cytokines. J Am Acad Dermatol. 2004;51:52–61.CrossRefGoogle Scholar
  11. 11.
    Moretti S, Fabbri P, Baroni G, Berti S, Bani D, Berti E, Nassini R, Lotti T, Massi D. Keratinocyte dysfunction in vitiligo epidermis: cytokine microenvironment and correlation to keratinocyte apoptosis. Histol Histopathol. 2009;24:849–57.PubMedGoogle Scholar
  12. 12.
    Marie J, Kovacs D, Pain C, et al. Inflammasome activation and vitiligo/non segmental vitiligo progression. Br J Dermatol. 2014;170:816–23.CrossRefGoogle Scholar
  13. 13.
    Morelli JG, Norris DA. Influence of inflammatory mediators and cytokines on human melanocytes function. J Invest Dermatol. 1993;100(Suppl):191S–5S.CrossRefGoogle Scholar
  14. 14.
    Haycock JW, Rowe SJ, Cartledge S, et al. α-Melanocyte stimulating hormone reduces impact of proinflammatory cytokine and peroxide-generated oxidative stress on keratinocytes and melanoma cell lines. J Biol Chem. 2000;275:15629–36.CrossRefGoogle Scholar
  15. 15.
    Dell’Anna ML, Picardo M. A review and a new hypothesis for non-immunological pathogenetic mechanism in vitiligo. Pigment Cell Res. 2006;19:406–11.CrossRefGoogle Scholar
  16. 16.
    Tracey D, Klareskog I, Saso EH, et al. Tumor necrosis factor antagonist mechanisms of action: a comprehensive review. Pharmacol Ther. 2008;117:244–79.CrossRefGoogle Scholar
  17. 17.
    Blanco P, Palucka AK, Pascual V, Banchereau J. Dendritic cells and cytokines in human inflammatory and autoimmune diseases. Cytokine Growth Factors Rev. 2008;19:41–52.CrossRefGoogle Scholar
  18. 18.
    Biton J, Boissier MC, Bessis N. TNF-alpha: activator or inhibitor of regulator T cells? Joint Bone Spine. 2012;79:119–23.CrossRefGoogle Scholar
  19. 19.
    Webb KB, Tung R, Winterfield LS, et al. Tumor necrosis factor-a inhibition can stabilize disease in progressive vitiligo. Br J Dermatol. 2015;173:641–50.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Yang L, Wei Y, Sun Y, et al. Interferon-gamma inhibits melanogenesis and induces apoptosis in melanocytes: a pivotal role of CD8+ cytotoxic T lymphocytes in vitiligo. Acta Derm Venereol. 2015;95:664–70.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Wang S, Zhou M, Lin F, et al. Interferon-g induces senescence in normal human melanocytes. PLoS One. 2014;9(3):e93232.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Natarajan VT, Ganju P, Singh A, et al. IFN-γ signaling maintains skin pigmentation homeostasis through regulation of melanosome maturation. Proc Natl Acad Sci U S A. 2014;111(6):2301–6.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Zhou J, Shang J, Song J, Ping F. Interlekin-18 augments growth ability of primary human melanocytes by PTEN inactivation through the AKT/NFkB pathway. Int J Biochem Cell Biol. 2013;45:308–16.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Zhou J, Ling J, Wang Y, et al. Cross-talk between interferon-gamma and interleukin-18 in melanogenesis. J Photochem Photobiol. 2016;163:133–43.CrossRefGoogle Scholar
  25. 25.
    Moretti S, Nassini R, Prignano F, Pacini A, Materazzi S, Naldini A, Simoni A, Baroni G, Pellerito S, Filippi I, Lotti T, Geppetti P, Massi D. Protease-activated receptor-2 down-regulation is associated to vitiligo lesions. Pigment Cell Melanoma Res. 2009;22:335–8.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Meephansa J, Tsuda H, Komine M, et al. Regulation of IL-33 expression by IFN-g and tumor necrosis factor-a in normal human keratinocytes. J Invest Dermatol. 2012;132:2593–600.CrossRefGoogle Scholar
  27. 27.
    Li P, Ma H, Han D, Mou K. Interleukin-33 affects cytokine production by keratinocytes in vitiligo. Clin Exp Dermatol. 2015;40:163–70.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Richmond JM, Bangari DS, Essien KI, et al. Keratinocyte-derived chemokines orchestrate T-cell positioning in the epidermis during vitiligo and may serve as biomarkers of the disease. J Invest Dermatol. 2017;137:350–8.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Harris JE, Harris TH, Weninger W, et al. J Invest Dermatol. 2012;132(7):1869–76.Google Scholar
  30. 30.
    Rashighi M, Argawal P, Richmond JM, et al. CXCL10 is critical for the progression and maintenance of depigmentation in a mouse model of vitiligo. Sci Transl Med. 2014;6:223ra23.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Bertolotti A, Boniface K, Vergier B, et al. Type I interferon signature in the initiation of the immune response in vitiligo. Pigment Cell Melanoma Res. 2014;27(3):398–407.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Jacquemin C, Rambert J, Guillet S, et al. HSP70 potentiates interferon-alpha production by plasmacytoid dendritic cells: relevance for cutaneous lupus and vitiligo pathogenesis. Br J Dermatol. 2017.
  33. 33.
    Li S, Zhu G, Yang Y, et al. Oxidative stress drives CD8(+) T-cell skin trafficking in patients with vitiligo through CXCL16 upregulation by activating the unfolded protein response in keratinocytes. J Allergy Clin Immunol. 2016. pii: S0091-6749(16)31277-5.
  34. 34.
    Rezk AF, Kemp DM, El-Domyati M, et al. Misbalanced CXCL12 and CCL5 chemotactic signals in vitiligo onset and progression. J Invest Dermatol. 2017;137(5):1126–34. Scholar
  35. 35.
    Feldmeyer L, Keller M, Niklaus G, et al. The inflammasome mediates UVB-induced activation and secretion of interleukin-1b by keratinocytes. Curr Biol. 2007;17:1140–5.CrossRefGoogle Scholar
  36. 36.
    Lundqvist EN, Egelrud T. Biologically active, alternatively processed interleukin-1beta in psoriatic scales. Eur J Immunol. 1997;27:2165–71.CrossRefGoogle Scholar
  37. 37.
    Kholmanskikh O, Van Baren N, Brasseur F, et al. Interleukins 1 alpha and 1 beta secreted by some melanoma cell lines strongly reduce expression of MITF-M and melanocyte differentiation antigens. Int J Cancer. 2010;127:1625–36.CrossRefGoogle Scholar
  38. 38.
    Toosi S, Orlow SJ, Manga P. Vitiligo-inducing phenols activate the unfolded protein response in melanocytes resulting in upregulation of IL-6 and IL-8. J Invest Dermatol. 2012;132:2601–9.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Lili Y, Yi W, Ji Y, et al. Global activation of CD8+ cytotoxic T lymphocytes correlates with an impairment in regulatory T cells in patients with generalized vitiligo. PLoS One. 2012;7:e37513.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Goodman WA, Levine AD, Massari JV, et al. IL-6 signaling in psoriasis prevents immune suppression by regulatory T cells. J Immunol. 2009;183:3170–6.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Passeron T, Ortonne JP. Activation of the unfolded protein response in vitiligo: the missing link? J Invest Dermatol. 2012;132:2502–4.CrossRefGoogle Scholar
  42. 42.
    Yao L, Hu DN, Chen M, Li SS. Subtoxic levels hydrogen-peroxide-induced expression of interleukin-6 by epidermal melanocytes. Arch Dermatol Res. 2012;304:831–8.CrossRefGoogle Scholar
  43. 43.
    Wang CQ, Akalu YT, Suarez-Farinas M, et al. IL-17 and TNF synergistically modulate cytokine expression while suppressing melanogenesis: potential relevance to psoriasis. J Invest Dermatol. 2013;133(12):2741–52. Scholar
  44. 44.
    Kotobuki Y, Tanemura A, Yang L, et al. Dysregulation of melanocyte function by Th17-related cytokines: significance of Th17 cell infiltration in autoimmune vitiligo vulgaris. Pigment Cell Melanoma Res. 2011;25:219–30.CrossRefGoogle Scholar
  45. 45.
    Haass NK, Herlyn M. Normal human melanocyte homeostasis as a paradigm for understanding melanoma. J Invest Dermatol Symp Proc. 2005;10:153–63.CrossRefGoogle Scholar
  46. 46.
    Haass NK, Smalley KSM, Herlyn M. Adhesion, migration and communication in melanocytes and melanoma. Pigment Cell Res. 2005;18:150–9.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Imokawa G. Autocrine and paracrine regulation of melanocytes in human skin and in pigmentary disorders. Pigment Cell Res. 2004;17:96–110.CrossRefGoogle Scholar
  48. 48.
    Hirobe T. Role of keratinocytes-derived factors involved in regulating the proliferation and differentiation of mammalian epidermal melanocytes. Pigment Cell Res. 2004;18:2–12.CrossRefGoogle Scholar
  49. 49.
    Yaar M, Grossman K, Eller M, et al. Evidence for nerve growth factor-mediated paracrine effects in human epidermis. J Cell Biol. 1991;115:821–8.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Tachibana M. MITF: a stream flowing for pigment cells. Pigment Cell Res. 2000;13:230–40.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Hara M, Yaar M, Gilchrest BA. Endothelin-1 of keratinocytes origin is a mediator of melanocyte dendricity. J Invest Dermatol. 1995;105:744–8.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Imokawa G, Yada Y, Miyagishi M. Endothelins secreted from human keratinocytes are intrinsic mitogens for human melanocytes. J Biol Chem. 1992;267:24675–80.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Imokawa G, Yada Y, Kimura M, et al. Granulocyte/macrophage colony-stimulating factor is an intrinsic keratinocyte-derived growth factor for human melanocytes in UVA-induced melanosis. Biochem J. 1996;313:625–31.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Grichnick JM, Burch JA, Burchette J, et al. The SCF/KIT pathway plays a critical role in the control of normal human melanocyte homeostasis. J Invest Dermatol. 1998;111:233–8.CrossRefGoogle Scholar
  55. 55.
    Geissler EN, Ryan MA, Housman DE. The dominant-white spotting (W) locus of the mouse encodes the c-kit proto-oncogene. Cell. 1988;55:185–92.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Imokawa G, Kobayashi T, Miyagishi M, et al. The role of endothelin-1 in epidermal hyperpigmentation and signalling mechanisms of mitogenesis and melanogenesis. Pigment Cell Res. 1997;10:218–28.CrossRefGoogle Scholar
  57. 57.
    Mui ALF, Wakao H, O’Farrell AM, et al. Interleukin-3, granulocyte-macrophage colony stimulating factor and interleukin-5 transduce signals through two STAT5 homologs. EMBO J. 1995;14:1166–75.Google Scholar
  58. 58.
    Wang Y, Morella KK, Ripperger J, et al. Receptors for interleukin-3 (IL-3) and growth hormone mediate an IL-6-type transcriptional induction in the presence of JAK2 or STAT3. Blood. 1995;86:1671–9.Google Scholar
  59. 59.
    Halaban R, Langdom R, Birchall N, et al. Basic fibroblastic growth factor from human keratinocytes is a natural mitogen for melanocytes. J Cell Biol. 1988;107:1611–9.CrossRefGoogle Scholar
  60. 60.
    Böhm M, Moellmann G, Cheng E, Zhao B, Wagner S, Alvarez-Franco M, Sassone-Corsi P, Halaban R. Identification of p90RSK as the probable 133-Ser-CREB kinase in human melanocytes. Cell Growth Diff. 1995;6:291–302.PubMedGoogle Scholar
  61. 61.
    Cario-André M, Pain C, Gauthier Y, et al. In vivo and in vivo evidence of dermal fibroblasts influence on human epidermal pigmentation. Pigment Cell Res. 2006;19:434–42.CrossRefGoogle Scholar
  62. 62.
    Mildner M, Mlitz V, Gruber F, et al. Hepatocyte growth factor establishes autocrine and paracrine feedback loops the protection of skin cells after UV irradiation. J Invest Dermatol. 2007;127:2637–44.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Lee AY, Kim NH, Choi WI, et al. Less keratinocyte-derived factors related to more keratinocyte apoptosis in depigmented than normally pigmented suction-blisters epidermis may cause passive melanocyte death in vitiligo. J Invest Dermatol. 2005;124:976–83.CrossRefGoogle Scholar
  64. 64.
    Bondanza S, Maurelli R, Paterna P, et al. Keratinocyte cultures from involved skin in vitiligo patients show an impaired in vitro behaviour. Pigment Cell Res. 2007;20:288–300.CrossRefGoogle Scholar
  65. 65.
    Kitamura R, Tsukamoto K, Harada K, et al. Mechanisms underlying the dysfunction of melanocytes in vitiligo epidermis: role of SCF/KIT protein interactions and its downstream effector, MITF-M. J Pathol. 2004;202:463–75.CrossRefGoogle Scholar
  66. 66.
    Lee AY, Youm YH, Kim NH, et al. Keratinocytes in the depigmented epidermis of vitiligo are more vulnerable to trauma (suction) than the keratinocytes in the normally pigmented epidermis, resulting in their apoptosis. Br J Dermatol. 2004;151:995–1003.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Lan CCE, Chen GS, Chiou MH, et al. FK506 promotes melanocyte and melanoblast growth and creates a favourable milieu for cell migration via keratinocytes: possible mechanisms of how tacrolimus ointment induces repigmentation in patients with vitiligo. Br J Dermatol. 2005;153:498–505.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Seif El Nasr H, Shaker OG, Fawzi MM, et al. Basic fibroblastic growth factor and tumour necrosis factor alpha in vitiligo and other hypopigmented disorders: suggestive possible therapeutic targets. J Eur Acad Dermatol Venereol. 2013;27:103–8.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Takata T, Tarutani M, Sano S. A failure in endothelin-1 production from vitiligo keratinocytes in response to ultraviolet B irradiation. J Dermatol Sci. 2013;71:210–2.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Rani S, Bhardwaj S, Srivastava N, et al. Senescence in the lesional fibroblasts of non-segmental vitiligo patients. Arch Dermatol Res. 2017;
  71. 71.
    Slominski A, Wortsman J, Luger T, Paus R, Solomon S. Corticotropin releasing hormone and proopiomelanocortin involvement in the cutaneous response to stress. Physiol Rev. 2000;80:979–1020.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Abdel-Malek Z, Swope VB, Suzuki I, Akcali C, Harriger MD, Boyce ST, Urabe K, Hearing VJ. Mitogenic and melanogenic stimulation of normal human melanocytes by melanotropic peptides. Proc Natl Acad Sci U S A. 1995;92:1789–93.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Kauser S, Schallreuter KU, Thody AJ, Gummer C, Tobin DJ. Regulation of human epidermal melanocyte biology by beta-endorphin. J Invest Dermatol. 2003;120:1073–80.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Kauser S, Thody AJ, Schallreuter KU, Gummer CL, Tobin DJ. Beta-endorphin as a regulator of human hair follicle melanocyte biology. J Invest Dermatol. 2004;123:184–95.CrossRefGoogle Scholar
  75. 75.
    Böhm M, Wolff I, Scholzen TE, Robinson SJ, Healy E, Luger TA, Robinson S, Healy E, Schwarz T, Schwarz A. Alpha-melanocyte-stimulating hormone protects from ultraviolet radiation-induced apoptosis and DNA damage. J Biol Chem. 2005;280:5795–802.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Böhm M, Luger TA, Tobin DJ, Garcia-Borron JC. Melanocortin receptor ligands: new horizons for skin biology and clinical dermatology. J Invest Dermatol. 2006;126:1966–75.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Brzoska T, Luger TA, Maaser C, Abels C, Böhm M. Alpha-melanocyte-stimulating hormone and related tripeptides: biochemistry, antiinflammatory and protective effects in vitro and in vivo, and future perspectives for the treatment of immune-mediated inflammatory diseases. Endocr Rev. 2008;29:581–602.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Kokot A, Metze D, Mouchet N, Galibert MD, Schiller M, Luger TA, Böhm M. Alpha-melanocyte-stimulating hormone counteracts the suppressive effect of UVB on Nrf2 and Nrf-dependent gene expression in human skin. Endocrinology. 2009;150:3197–206.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Mozzanica N, Villa ML, Foppa S, Vignati G, Cattaneo A, Diotti R, Finzi AF. Plasma alpha-melanocyte-stimulating hormone, beta-endorphin, met-enkephalin, and natural killer cell activity in vitiligo. J Am Acad Dermatol. 1992;26:693–700.CrossRefGoogle Scholar
  80. 80.
    Caixia T, Daming Z, Xiran L. Levels of beta-endorphin in the plasma and skin tissue fluids of patients with vitiligo. J Dermatol Sci. 2001;26:62–6.CrossRefGoogle Scholar
  81. 81.
    Pichler R, Sfetsos K, Badics B, Gutenbrunner S, Auböck J. Vitiligo patients present lower plasma levels of alpha-melanotropin immunoreactivities. Neuropeptides. 2006;40:177–83.CrossRefGoogle Scholar
  82. 82.
    Graham A, Westerhof W, Thody AJ. The expression of alpha-MSH by melanocytes is reduced in vitiligo. Ann N Y Acad Sci. 1999;885:470–3.CrossRefGoogle Scholar
  83. 83.
    Spencer JD, Gibbons NC, Rokos H, Peters EM, Wood JM, Schallreuter KU. Oxidative stress via hydrogen peroxide affects proopiomelanocortin peptides directly in the epidermis of patients with vitiligo. J Invest Dermatol. 2006;127:411–20.CrossRefGoogle Scholar
  84. 84.
    Seidah NG, Benjannet S, Hamelin J, Mamarbachi AM, Basak A, Marcinkiewicz J, Mbikay M, Chretien M, Marcinkiewicz M. The subtilisin/kexin family of precursor convertases. Emphasis on PC1, PC2/7B2, POMC and the novel enzyme SKI-1. Ann N Y Acad Sci. 1999;885:57–74.CrossRefGoogle Scholar
  85. 85.
    Spencer JD, Gibbons NC, Böhm M, Schallreuter KU. The Ca2+−binding capacity of epidermal furin is disrupted by H2O2-mediated oxidation in vitiligo. Endocrinology. 2008;149:1638–45.CrossRefGoogle Scholar
  86. 86.
    Kingo K, Aunin E, Karelson M, Philips MA, Rätsep R, Silm H, Vasar E, Soomets U, Kõks S. Gene expression analysis of melanocortin system in vitiligo. J Dermatol Sci. 2007;48:113–22.CrossRefGoogle Scholar
  87. 87.
    Nagui NA, Mahmoud SB, Abdel Hay RM, Hassieb MM, Rashed LA. Assessment of gene expression levels of proopiomelanocortin (POMC) and melanocortin-1 receptor (MC1R) in vitiligo. Australas J Dermatol. 2017;58(2):e36–9.CrossRefGoogle Scholar
  88. 88.
    Agretti P, De Marco G, Sansone D, Betterle C, Coco G, Dimida A, Ferrarini E, Pinchera A, Vitti P, Tonacchera M. Patients affected by vitiligo and autoimmune diseases do not show antibodies interfering with the activity of the melanocortin 1 receptor. J Endocrinol Investig. 2010;33:784–8.CrossRefGoogle Scholar
  89. 89.
    Pérez Oliva AB, Fernéndez LP, Detorre C, Herráiz C, Martínez-Escribano JA, Benítez J, Lozano Teruel JA, García-Borrón JC, Jiménez-Cervantes C, Ribas G. Identification and functional analysis of novel variants of the human melanocortin 1 receptor found in melanoma patients. Hum Mutat. 2009;30:811–22.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Széll M, Baltás E, Bodai L, Bata-Csörgo Z, Nagy N, Dallos A, Pourfarzi R, Simics E, Kondorosi I, Szalai Z, Tóth GK, Hunyadi J, Dobozy A, Kemény L. The Arg160Trp allele of melanocortin-1 receptor gene might protect against vitiligo. Photochem Photobiol. 2008;84:565–71.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Na GY, Lee KH, Kim MK, Lee SJ, Kim DW, Kim JC. Polymorphisms in the melanocortin-1 receptor (MC1R) and agouti signaling protein (ASIP) genes in Korean vitiligo patients. Pigment Cell Res. 2003;16:383–7.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Jin Y, Andersen G, Yorgov D, Ferrara TM, Ben S, Brownson KM, Holland PJ, Birlea SA, Siebert J, Hartmann A, Lienert A, van Geel N, Lambert J, Luiten RM, Wolkerstorfer A, Wietze van der Veen JP, Bennett DC, Taïeb A, Ezzedine K, Kemp EH, Gawkrodger DJ, Weetman AP, Kõks S, Prans E, Kingo K, Karelson M, Wallace MR, McCormack WT, Overbeck A, Moretti S, Colucci R, Picardo M, Silverberg NB, Olsson M, Valle Y, Korobko I, Böhm M, Lim HW, Hamzavi I, Zhou L, Mi QS, Fain PR, Santorico SA, Spritz RA. Genome-wide association studies of autoimmune vitiligo identify 23 new risk loci and highlight key pathways and regulatory variants. Nat Genet. 2016;48:1418–24.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of DermatologyUniversity of MünsterMünsterGermany
  2. 2.INSERM U1035, BMGIC, Immunodermatology team, ATIP-AVENIRUniversité de BordeauxBordeauxFrance
  3. 3.Division of Clinical Preventive and Oncologic DermatologyUniversity of FlorenceFlorenceItaly

Personalised recommendations