Neoadjuvant Treatment in Breast Cancer

  • Rui Wang
  • Chau DangEmail author


Neoadjuvant (preoperative) therapy, initially developed to render primary inoperable tumors, is increasingly being delivered in patients with smaller lesions and particularly in patients with human epidermal growth factor receptor 2 (HER2)-positive and triple-negative breast cancer (TNBC). The neoadjuvant approach offers the advantages of downstaging the tumor and axilla, allowing for less extensive surgery, reducing postoperative complications, and evaluating the efficacy of therapy in vivo. Pathologic complete response (pCR) has been accepted as a primary endpoint in a number of neoadjuvant trials. This chapter provides a summary of the knowledge gained thus far from neoadjuvant trials conducted in breast cancer and discusses the current treatment recommendations and future research and trends.


Breast cancer pCR Neoadjuvant Biomarkers Targeted therapy Clinical trials 



Breast-conserving surgery


Disease-free survival


Event-free survival


Estrogen receptor


Human epidermal growth factor receptor 2


Hormonal receptor


Homologous recombination deficiency


Odds ratios


Overall survival


Pathologic complete response


Clinical response rate


Conflict of Interest

Rui Wang has no conflict no interest.

Chau Dang has research funding through Roche/Genentech and GlaxoSmithKline.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


  1. 1.
    Carey LA et al (2005) American Joint Committee on Cancer tumor-node-metastasis stage after neoadjuvant chemotherapy and breast cancer outcome. J Natl Cancer Inst 97(15):1137–1142CrossRefGoogle Scholar
  2. 2.
    Guarneri V et al (2006) Prognostic value of pathologic complete response after primary chemotherapy in relation to hormone receptor status and other factors. J Clin Oncol 24(7):1037–1044CrossRefGoogle Scholar
  3. 3.
    Kuerer HM et al (1999) Clinical course of breast cancer patients with complete pathologic primary tumor and axillary lymph node response to doxorubicin-based neoadjuvant chemotherapy. J Clin Oncol 17(2):460–469CrossRefGoogle Scholar
  4. 4.
    Symmans WF et al (2007) Measurement of residual breast cancer burden to predict survival after neoadjuvant chemotherapy. J Clin Oncol 25(28):4414–4422CrossRefGoogle Scholar
  5. 5.
    Fisher B et al (1997) Effect of preoperative chemotherapy on local-regional disease in women with operable breast cancer: findings from National Surgical Adjuvant Breast and Bowel Project B-18. J Clin Oncol 15(7):2483–2493CrossRefGoogle Scholar
  6. 6.
    Schneeweiss A et al (2014) Evaluating the predictive value of biomarkers for efficacy outcomes in response to pertuzumab- and trastuzumab-based therapy: an exploratory analysis of the TRYPHAENA study. Breast Cancer Res 16(4):R73CrossRefGoogle Scholar
  7. 7.
    Carey LA et al (2016) Molecular heterogeneity and response to neoadjuvant human epidermal growth factor receptor 2 targeting in CALGB 40601, a randomized phase III trial of paclitaxel plus trastuzumab with or without lapatinib. J Clin Oncol 34(6):542–549CrossRefGoogle Scholar
  8. 8.
    Mauri D, Pavlidis N, Ioannidis JP (2005) Neoadjuvant versus adjuvant systemic treatment in breast cancer: a meta-analysis. J Natl Cancer Inst 97(3):188–194CrossRefGoogle Scholar
  9. 9.
    Rastogi P et al (2008) Preoperative chemotherapy: updates of National Surgical Adjuvant Breast and Bowel Project Protocols B-18 and B-27. J Clin Oncol 26(5):778–785CrossRefGoogle Scholar
  10. 10.
    Cortazar P et al (2014) Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet 384(9938):164–172CrossRefGoogle Scholar
  11. 11.
    Rouzier R et al (2005) Breast cancer molecular subtypes respond differently to preoperative chemotherapy. Clin Cancer Res 11(16):5678–5685CrossRefGoogle Scholar
  12. 12.
    Von Minckwitz G et al (2012) Definition and impact of pathologic complete response on prognosis after neoadjuvant chemotherapy in various intrinsic breast cancer subtypes. J Clin Oncol 30(15):1796–1804CrossRefGoogle Scholar
  13. 13.
    Kaufmann M et al (2012) Recommendations from an international consensus conference on the current status and future of neoadjuvant systemic therapy in primary breast cancer. Ann Surg Oncol 19(5):1508–1516CrossRefGoogle Scholar
  14. 14.
    Colleoni M et al (2004) Chemotherapy is more effective in patients with breast cancer not expressing steroid hormone receptors: a study of preoperative treatment. Clin Cancer Res 10(19):6622–6628CrossRefGoogle Scholar
  15. 15.
    Peto R et al (2012) Comparisons between different polychemotherapy regimens for early breast cancer: meta-analyses of long-term outcome among 100,000 women in 123 randomised trials. Lancet 379(9814):432–444CrossRefGoogle Scholar
  16. 16.
    Bear HD et al (2006) Sequential preoperative or postoperative docetaxel added to preoperative doxorubicin plus cyclophosphamide for operable breast cancer: National Surgical Adjuvant Breast and Bowel Project Protocol B-27. J Clin Oncol 24(13):2019–2027CrossRefGoogle Scholar
  17. 17.
    Untch M et al (2016) Nab-paclitaxel versus solvent-based paclitaxel in neoadjuvant chemotherapy for early breast cancer (GeparSepto-GBG 69): a randomised, phase 3 trial. Lancet Oncol 17(3):345–356CrossRefGoogle Scholar
  18. 18.
    Alba E et al (2012) Chemotherapy (CT) and hormonotherapy (HT) as neoadjuvant treatment in luminal breast cancer patients: results from the GEICAM/2006-03, a multicenter, randomized, phase-II study. Ann Oncol 23(12):3069–3074CrossRefGoogle Scholar
  19. 19.
    Spring LM et al (2016) Neoadjuvant endocrine therapy for estrogen receptor-positive breast cancer: a systematic review and meta-analysis. JAMA Oncol 2(11):1477–1486CrossRefGoogle Scholar
  20. 20.
    Semiglazov VF et al (2007) Phase 2 randomized trial of primary endocrine therapy versus chemotherapy in postmenopausal patients with estrogen receptor-positive breast cancer. Cancer 110(2):244–254CrossRefGoogle Scholar
  21. 21.
    Palmieri C et al (2014) NEOCENT: a randomised feasibility and translational study comparing neoadjuvant endocrine therapy with chemotherapy in ER-rich postmenopausal primary breast cancer. Breast Cancer Res Treat 148(3):581–590CrossRefGoogle Scholar
  22. 22.
    Ellis MJ, Ma C (2007) Letrozole in the neoadjuvant setting: the P024 trial. Breast Cancer Res Treat 105(Suppl 1):33–43CrossRefGoogle Scholar
  23. 23.
    Eiermann W et al (2001) Preoperative treatment of postmenopausal breast cancer patients with letrozole: a randomized double-blind multicenter study. Ann Oncol 12(11):1527–1532CrossRefGoogle Scholar
  24. 24.
    Ellis MJ et al (2011) Randomized phase II neoadjuvant comparison between letrozole, anastrozole, and exemestane for postmenopausal women with estrogen receptor-rich stage 2 to 3 breast cancer: clinical and biomarker outcomes and predictive value of the baseline PAM50-based intrinsic subtype--ACOSOG Z1031. J Clin Oncol 29(17):2342–2349CrossRefGoogle Scholar
  25. 25.
    Toi M et al (2011) Ki67 index changes, pathological response and clinical benefits in primary breast cancer patients treated with 24 weeks of aromatase inhibition. Cancer Sci 102(4):858–865CrossRefGoogle Scholar
  26. 26.
    Slamon DJ et al (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235(4785):177–182CrossRefGoogle Scholar
  27. 27.
    Ross JS, Fletcher JA (1998) The HER-2/neu oncogene in breast cancer: prognostic factor, predictive factor, and target for therapy. Oncologist 3(4):237–252PubMedGoogle Scholar
  28. 28.
    Gianni L et al (2010) Neoadjuvant chemotherapy with trastuzumab followed by adjuvant trastuzumab versus neoadjuvant chemotherapy alone, in patients with HER2-positive locally advanced breast cancer (the NOAH trial): a randomised controlled superiority trial with a parallel HER2-negative cohort. Lancet 375(9712):377–384CrossRefGoogle Scholar
  29. 29.
    Gianni L et al (2014) Neoadjuvant and adjuvant trastuzumab in patients with HER2-positive locally advanced breast cancer (NOAH): follow-up of a randomised controlled superiority trial with a parallel HER2-negative cohort. Lancet Oncol 15(6):640–647CrossRefGoogle Scholar
  30. 30.
    Cameron D et al (2017) 11 Years’ follow-up of trastuzumab after adjuvant chemotherapy in HER2-positive early breast cancer: final analysis of the HERceptin Adjuvant (HERA) trial. Lancet 389(10075):1195–1205CrossRefGoogle Scholar
  31. 31.
    Perez EA et al (2014) Trastuzumab plus adjuvant chemotherapy for human epidermal growth factor receptor 2-positive breast cancer: planned joint analysis of overall survival from NSABP B-31 and NCCTG N9831. J Clin Oncol 32(33):3744–3752CrossRefGoogle Scholar
  32. 32.
    Pivot X et al (2013) 6 months versus 12 months of adjuvant trastuzumab for patients with HER2-positive early breast cancer (PHARE): a randomised phase 3 trial. Lancet Oncol 14(8):741–748CrossRefGoogle Scholar
  33. 33.
    Gianni L et al (2016) 5-year analysis of neoadjuvant pertuzumab and trastuzumab in patients with locally advanced, inflammatory, or early-stage HER2-positive breast cancer (NeoSphere): a multicentre, open-label, phase 2 randomised trial. Lancet Oncol 17(6):791–800CrossRefGoogle Scholar
  34. 34.
    Schneeweiss A et al (2013) Pertuzumab plus trastuzumab in combination with standard neoadjuvant anthracycline-containing and anthracycline-free chemotherapy regimens in patients with HER2-positive early breast cancer: a randomized phase II cardiac safety study (TRYPHAENA). Ann Oncol 24(9):2278–2284CrossRefGoogle Scholar
  35. 35.
    Swain SM, Ewer MS, Viale G et al (2017) Primary analysis of BERENICE: a phase II cardiac safety study of pertuzumab, trastuzumab, and neoadjuvant anthracycline-based chemotherapy in patients with locally advanced, inflammatory, or early-stage, unilateral, and invasive HER2-positive breast cancer. Cancer Res 77(4 Suppl):4-21–4-41Google Scholar
  36. 36.
    Untch M et al (2012) Lapatinib versus trastuzumab in combination with neoadjuvant anthracycline-taxane-based chemotherapy (GeparQuinto, GBG 44): a randomized phase 3 trial. Lancet Oncol 13(2):135–144CrossRefGoogle Scholar
  37. 37.
    Baselga J et al (2012) Lapatinib with trastuzumab for HER2-positive early breast cancer (NeoALTTO): a randomised, open-label, multicentre, phase 3 trial. Lancet 379(9816):633–640CrossRefGoogle Scholar
  38. 38.
    Guarneri V et al (2012) Preoperative chemotherapy plus trastuzumab, lapatinib, or both in human epidermal growth factor receptor 2-positive operable breast cancer: results of the randomized phase II CHER-LOB study. J Clin Oncol 30(16):1989–1995CrossRefGoogle Scholar
  39. 39.
    Robidoux A et al (2013) Lapatinib as a component of neoadjuvant therapy for HER2-positive operable breast cancer (NSABP protocol B-41): an open-label, randomised phase 3 trial. Lancet Oncol 14(12):1183–1192CrossRefGoogle Scholar
  40. 40.
    de Azambuja E et al (2014) Lapatinib with trastuzumab for HER2-positive early breast cancer (NeoALTTO): survival outcomes of a randomised, open-label, multicentre, phase 3 trial and their association with pathological complete response. Lancet Oncol 15(10):1137–1146CrossRefGoogle Scholar
  41. 41.
    Piccart-Gebhart M et al (2016) Adjuvant lapatinib and trastuzumab for early human epidermal growth factor receptor 2-positive breast cancer: results from the randomized phase III adjuvant lapatinib and/or trastuzumab treatment optimization trial. J Clin Oncol 34(10):1034–1042CrossRefGoogle Scholar
  42. 42.
    Pegram MD et al (2004) Rational combinations of trastuzumab with chemotherapeutic drugs used in the treatment of breast cancer. J Natl Cancer Inst 96(10):739–749CrossRefGoogle Scholar
  43. 43.
    Sikov WM et al (2009) Frequent pathologic complete responses in aggressive stages II to III breast cancers with every-4-week carboplatin and weekly paclitaxel with or without trastuzumab: a Brown University Oncology Group Study. J Clin Oncol 27(28):4693–4700CrossRefGoogle Scholar
  44. 44.
    Coudert BP et al (2007) Multicenter phase II trial of neoadjuvant therapy with trastuzumab, docetaxel, and carboplatin for human epidermal growth factor receptor-2-overexpressing stage II or III breast cancer: results of the GETN(A)-1 trial. J Clin Oncol 25(19):2678–2684CrossRefGoogle Scholar
  45. 45.
    Von Minckwitz G et al (2014) Neoadjuvant carboplatin in patients with triple-negative and HER2-positive early breast cancer (GeparSixto; GBG 66): a randomised phase 2 trial. Lancet Oncol 15(7):747–756CrossRefGoogle Scholar
  46. 46.
  47. 47.
  48. 48.
    Li X et al (2017) Triple-negative breast cancer has worse overall survival and cause-specific survival than non-triple-negative breast cancer. Breast Cancer Res Treat 161(2):279–287CrossRefGoogle Scholar
  49. 49.
    Sikov WM et al (2015) Impact of the addition of carboplatin and/or bevacizumab to neoadjuvant once-per-week paclitaxel followed by dose-dense doxorubicin and cyclophosphamide on pathologic complete response rates in stage II to III triple-negative breast cancer: CALGB 40603 (Alliance). J Clin Oncol 33(1):13–21CrossRefGoogle Scholar
  50. 50.
    Denkert C et al (2015) Tumor-infiltrating lymphocytes and response to neoadjuvant chemotherapy with or without carboplatin in human epidermal growth factor receptor 2-positive and triple-negative primary breast cancers. J Clin Oncol 33(9):983–991CrossRefGoogle Scholar
  51. 51.
    Rugo HS et al (2016) Adaptive randomization of veliparib-carboplatin treatment in breast cancer. N Engl J Med 375(1):23–34CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Memorial Sloan Kettering Cancer CenterNew YorkUSA
  2. 2.Westchester Medical Oncology Service, Breast Medicine ServiceMemorial Sloan Kettering Cancer CenterNew YorkUSA

Personalised recommendations