On Bi-Hermitian Surfaces

Chapter
Part of the Springer INdAM Series book series (SINDAMS, volume 21)

Abstract

We present an overview of results giving a satisfactory classification of compact bi-Hermitian surfaces (S, J±). That is to say compact complex surfaces (S, J+) admitting a Hermitian metric g and a different complex structure J which is also g-Hermitian.

Notes

Acknowledgements

The author would like to thank Prof. A. Fujiki for longstanding collaboration and friendship.

References

  1. 1.
    D. Alekseevsky, S. Marchiafava, M. Pontecorvo, Compatible complex structures on almost quaternionic manifolds. Trans. Am. Math. Soc. 351, 997–1014 (1999)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    V. Apostolov, Bihermitian surfaces with odd first Betti number. Math. Z. 238, 555–568 (2001)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    V. Apostolov, G. Dloussky, Bihermitian metrics on Hopf surfaces. Math. Res. Lett. 15(5), 827–839 (2008)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    V. Apostolov, G. Dloussky, Locally conformally symplectic structures on compact non-Kähler complex surfaces. Int. Math. Res. Not. 9, 2717–2747 (2016)CrossRefGoogle Scholar
  5. 5.
    V. Apostolov, M. Gualtieri, Generalized Kähler manifolds, commuting complex structures and split tangent bundle. Commun. Math. Phys. 271, 561–575 (2007)CrossRefMATHGoogle Scholar
  6. 6.
    V. Apostolov, P. Gauduchon, G. Grantcharov, Bi-Hermitian structures on complex surfaces. Proc. Lond. Math. Soc. (3) 79(2), 414–428 (1999); Proc. Lond. Math. Soc. (3) 92(1), 200–202 (2006)Google Scholar
  7. 7.
    V. Apostolov, M. Bailey, G. Dloussky, From locally conformally Kähler to bi-Hermitian structures on non-Kähler complex surfaces. Math. Res. Lett. 22, 317–336 (2015)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    M.F. Atiyah, N.J. Hitchin, I.M. Singer, Self-duality in four-dimensional Riemannian geometry. Proc. R. Soc. A 362, 425–461 (1978)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    C. Bartocci, E. Macrì, Classification of Poisson surfaces. Commun. Contemp. Math. 7, 89–95 (2005)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    F.A. Bogomolov, Classification of surfaces of class VII0 and affine geometry. Math. USSr-Izv 10, 255–269 (1976)CrossRefGoogle Scholar
  11. 11.
    E. Bombieri, Letter to Kodaira (1973)Google Scholar
  12. 12.
    C.P. Boyer, Conformal duality and compact complex surfaces. Math. Ann. 274, 517–526 (1986)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    C.P. Boyer, A note on hyperhermitian four-manifolds. Proc. Am. Math. Soc. 102, 157–164 (1988)MATHGoogle Scholar
  14. 14.
    M. Brunella, Locally conformally Kähler metrics on certain non-Kählerian surfaces. Math. Ann. 346, 629–639 (2010)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    M. Brunella, Locally conformally Kähler metrics on Kato surfaces. Nagoya Math. J. 202, 77–81 (2011)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    G. Cavalcanti, M. Gualtieri, Blowing up generalized Kähler 4-manifolds. Bull. Braz. Math. Soc. (N.S.) 42(4), 537–557 (2011)Google Scholar
  17. 17.
    G. Dloussky, On surfaces of class VII0 with numerically anticanonical divisor. Am. J. Math. 128(3), 639–670 (2006)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    G. Dloussky, From non-Kähler surfaces to Cremona group of \(\mathbb{C}\mathbb{P}_{2}\). Comp. Mani. 1, 1–33 (2014)MathSciNetGoogle Scholar
  19. 19.
    G. Dloussky, K. Oeljeklaus, Vector fields and foliations an compact surfaces of class VII0. Ann. Inst. Four. 49, 1503–1545 (1999)CrossRefMATHGoogle Scholar
  20. 20.
    G. Dloussky, K. Oeljeklaus, M. Toma, Class VII0 surfaces with b 2 curves. Tohoku Math. J. (2) 55, 283–309 (2003)Google Scholar
  21. 21.
    I. Enoki, Surfaces of class VII0 with curves. Tohoku Math. J. (2) 33, 453–492 (1981)Google Scholar
  22. 22.
    A. Fujiki, M. Pontecorvo, Anti-self-dual bihermitian structures on Inoue surfaces. J. Differ. Geom. 85(1), 15–71 (2010)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    A. Fujiki, M. Pontecorvo, Twistors and bi-Hermitian surfaces of non-Kähler type, in Symmetry, Integrability and Geometry: Methods and Applications (SIGMA), vol. 10 (2014) Paper 042, 13 pp.Google Scholar
  24. 24.
    A. Fujiki, M. Pontecorvo, Numerically anti-canonical divisors on Kato surfaces. J. Geom. Phys. 91, 117–130 (2015)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    A. Fujiki, M. Pontecorvo, Bi-Hermitian metrics on Kato surfaces 2016. arXiv:1607.00192 [math.DG]Google Scholar
  26. 26.
    S.J. Gates Jr., C.M. Hull, M. Rocek, Twisted multiplets and new supersymmetric nonlinear σ-models. Nucl. Phys. B 248, 157–186 (1984)MathSciNetCrossRefGoogle Scholar
  27. 27.
    P. Gauduchon, La 1-forme de torsion d’une variété hermitienne compacte. Math. Ann. 267, 495–518 (1984)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    R. Goto, Unobstructed K-deformations of generalized complex structures and bi-Hermitian structures. Adv. Math. 231, 1041–1067 (2012)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    R. Goto, On the stability of locally conformal Kähler structures. J. Math. Soc. Jpn. 66, 1375–1401 (2014)CrossRefMATHGoogle Scholar
  30. 30.
    M. Gualtieri, Branes on Poisson varieties, in The Many Facets of Geometry (Oxford University Press, Oxford, 2010), pp. 368–394CrossRefMATHGoogle Scholar
  31. 31.
    M. Gualtieri, Generalized Kähler geometry. Commun. Math. Phys. 331, 297–331 (2014). arXiv:1007.3485Google Scholar
  32. 32.
    N.J. Hitchin, Generalized Calabi-Yau manifolds. Q. J. Math. 54(3), 281–308 (2003)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    N.J. Hitchin, Instantons, Poisson structures and generalized Kähler geometry. Commun. Math. Phys. 265, 131–164 (2006)MATHGoogle Scholar
  34. 34.
    N.J. Hitchin, Bihermitian metrics on Del Pezzo surfaces. J. Symplect. Geom. 5, 1–8 (2007)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    M. Inoue, On surfaces of class VII 0. Inv. Math. 24, 269–310 (1974)CrossRefMATHGoogle Scholar
  36. 36.
    M. Kato, Compact complex manifolds containing “global” spherical shells, in I. Proceedings of the International Symposium on Algebraic Geometry (Kyoto University, Kyoto, 1977) (Kinokuniya Book Store, Tokyo, 1978), pp. 45–84Google Scholar
  37. 37.
    P. Kobak, Explicit doubly-Hermitian metrics. Differ. Geom. Appl. 10, 179–185 (1999)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    C.R. Lebrun, Anti-self-dual Hermitian metrics on blown-up Hopf surfaces. Math. Ann. 289, 383–392 (1991)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    J. Li, S.-T. Yau, F. Zheng, On projectively flat Hermitian manifolds. Commun. Anal. Geom. 2, 103–109 (1994)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    O. Muskarov, Existence of holomorphic functions on almost complex manifolds. Math. Z. 192, 283–295 (1986)MathSciNetCrossRefGoogle Scholar
  41. 41.
    I. Nakamura, Classification of non-Kähler complex surfaces. (Japanese) Translated in Sugaku Expositions 2, 209–229 (1989); Sugaku 36(2), 110–124 (1984)Google Scholar
  42. 42.
    K. Oeljeklaus, M. Toma, Logarithmic moduli spaces for surfaces of class VII. Math. Ann. 341, 323–345 (2008)MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    M. Pontecorvo, Complex structures on Riemannian four-manifolds. Math. Ann. 309(1), 159–177 (1997)MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    S. Salamon, Special structures on four-manifolds. Riv. Mat. Univ. Parma (4) 17, 109–123 (1991)Google Scholar
  45. 45.
    S. Salamon, Orthogonal complex structures, in Differential Geometry and Applications (Brno, 1995) (Masaryk University, Brno, 1996), pp. 103–117Google Scholar
  46. 46.
    A. Teleman, Projectively flat surfaces and Bogomolov’s theorem on class VII0 surfaces. Int. J. Math. 5, 253–264 (1994)CrossRefMATHGoogle Scholar
  47. 47.
    A. Teleman, The pseudo-effective cone of a non-Kählerian surface and applications. Math. Ann. 335, 965–989 (2006)MathSciNetCrossRefMATHGoogle Scholar
  48. 48.
    A. Teleman, Instantons and curves on class VII surfaces. Ann. Math. (2) 1722, 1749–1804 (2010)Google Scholar

Copyright information

© Springer International Publishing AG, a part of Springer Nature 2017

Authors and Affiliations

  1. 1.Dipartimento di Matematica e FisicaUniversità’ Roma TreRomaItaly

Personalised recommendations