Acute Coronary Syndrome: Ruptured and Intact Fibrous Caps

  • Annapoorna Kini
  • Jagat Narula
  • Yuliya Vengrenyuk
  • Samin Sharma


Coronary thrombosis is the most common cause of acute coronary syndromes (ACS), including sudden cardiac death. Plaque rupture in most cases, plaque erosion uncommonly, and calcified nodule rarely have been demonstrated to be the main mechanisms underlying acute coronary thrombosis in both ex vivo and in vivo studies. In the setting of ACS, high-resolution intravascular imaging with OCT can characterize plaque pathology at the time of intervention in order to better understand the etiology of ACS and develop personalized treatment strategies leading to improved long-term outcomes. Spontaneous coronary artery dissection (SCAD) is another rare but important cause of ACS with an incidence of 0.1 to 2.1%. While diagnostic accuracy of angiography for SCAD is limited, OCT can provide substantial insights into the morphologic features of the condition. Finally, OCT allows detailed in vivo examination of the morphologic characteristics of coronary arteries in patients with coronary spasm (CS), which plays an important role in the pathogenesis of an acute coronary event.


Acute coronary syndrome Sudden coronary death Myocardial infarction Plaque rupture Plaque erosion Coronary thrombosis Spontaneous coronary artery dissection Systemic lupus erythematous Coronary spasm Culprit lesion Fibrous cap Thrombus True and false lumen Intramural hematoma 

Supplementary material

Video 2.1

OCT pullback of plaque rupture followed by thrombotic occlusion (Fig. 2.1) (AVI 41020 kb)

Video 2.2

OCT pullback of plaque rupture in unstable angina pectoris (Case 2, Fig. 2.5) (AVI 52633 kb)

Video 2.3

OCT pullback of plaque rupture in unstable angina pectoris (Case 2, Fig. 2.6) (AVI 55229 kb)

Video 2.4

OCT pullback of ST-elevation myocardial infarction caused by plaque rupture and total occlusion of the left anterior descending artery (Case 3, Fig. 2.7) (AVI 26147 kb)

Video 2.5

OCT pullback of ST-elevation myocardial infarction caused by plaque rupture and total occlusion of the left anterior descending artery (Case 3, Fig. 2.8) (AVI 25799 kb)

Video 2.6

OCT pullback of ST-elevation myocardial infarction arising from plaque erosion: acute coronary event with intact fibrous cap (Case 4, Fig. 2.9) (AVI 30763 kb)

Video 2.7

OCT pullback of plaque erosion in non-ST-elevation myocardial infarction (Case 5, Fig. 2.11) (AVI 32061 kb)

Video 2.8

OCT pullback of probable plaque erosion in non-ST-elevation myocardial infarction (Case 7, Fig. 2.13) (AVI 32525 kb)

Video 2.9

OCT pullback of unstable angina in a young patient with systemic lupus erythematosus (Case 7, Fig. 2.14) (AVI 39839 kb)

Video 2.10

OCT pullback of spontaneous coronary vasospasm (Case 8, Fig. 2.16) (AVI 32736 kb)

Video 2.11

OCT pullback of postpartum spontaneous coronary artery dissection (Case 10, Fig. 2.17) (AVI 32332 kb)

Video 2.12

OCT pullback of postpartum spontaneous coronary artery dissection (Case 10, Fig. 2.18) (AVI 34207 kb)

Video 2.13

OCT pullback of coronary intramural hematoma in unstable angina pectoris (Case 10, Fig. 2.19) (AVI 41236 kb)


  1. 1.
    Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 2000;20:1262–75.CrossRefPubMedGoogle Scholar
  2. 2.
    Virmani R, Burke AP, Farb A, Kolodgie FD. Pathology of the vulnerable plaque. J Am Coll Cardiol. 2006;47:C13–8.CrossRefPubMedGoogle Scholar
  3. 3.
    van der Wal AC, Becker AE, van der Loos CM, Das PK. Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation. 1994;89:36–44.CrossRefPubMedGoogle Scholar
  4. 4.
    Kramer MC, Rittersma SZ, de Winter RJ, Ladich ER, Fowler DR, Liang YH, et al. Relationship of thrombus healing to underlying plaque morphology in sudden coronary death. J Am Coll Cardiol. 2010;55:122–32.CrossRefPubMedGoogle Scholar
  5. 5.
    Yonetsu T, Kakuta T, Lee T, Takahashi K, Kawaguchi N, Yamamoto G, et al. In vivo critical fibrous cap thickness for rupture-prone coronary plaques assessed by optical coherence tomography. Eur Heart J. 2011;32:1251–9.CrossRefPubMedGoogle Scholar
  6. 6.
    Tanaka A, Imanishi T, Kitabata H, Takahashi K, Kawaguchi N, Yamamoto G, et al. Morphology of exertion-triggered plaque rupture in patients with acute coronary syndrome: an optical coherence tomography study. Circulation. 2008;118:2368–73.CrossRefPubMedGoogle Scholar
  7. 7.
    Jia H, Abtahian F, Aguirre AD, Lee S, Chia S, Lowe H, et al. In vivo diagnosis of plaque erosion and calcified nodule in patients with acute coronary syndrome by intravascular optical coherence tomography. J Am Coll Cardiol. 2013;62:1748–58.CrossRefPubMedGoogle Scholar
  8. 8.
    Saia F, Komukai K, Capodanno D, Sirbu V, Musumeci G, Boccuzzi G, et al. Eroded versus ruptured plaques at the culprit site of STEMI: in vivo pathophysiological features and response to primary PCI. JACC Cardiovasc Imaging. 2015;8:566–75.CrossRefPubMedGoogle Scholar
  9. 9.
    Higuma T, Soeda T, Abe N, Yamada M, Yokoyama H, Shibutani S, et al. A combined optical coherence tomography and intravascular ultrasound study on plaque rupture, plaque erosion, and calcified nodule in patients with ST-segment elevation myocardial infarction: incidence, morphologic characteristics, and outcomes after percutaneous coronary intervention. JACC Cardiovasc Interv. 2015;8:1166–76.CrossRefPubMedGoogle Scholar
  10. 10.
    Ozaki Y, Okumura M, Ismail TF, Motoyama S, Naruse H, Hattori K, et al. Coronary CT angiographic characteristics of culprit lesions in acute coronary syndromes not related to plaque rupture as defined by optical coherence tomography and angioscopy. Eur Heart J. 2011;32:2814–23.CrossRefPubMedGoogle Scholar
  11. 11.
    Otsuka F, Joner M, Prati F, Virmani R, Narula J. Clinical classification of plaque morphology in coronary disease. Nat Rev Cardiol. 2014;11:379–89.CrossRefPubMedGoogle Scholar
  12. 12.
    Kanwar SS, Stone GW, Singh M, Virmani R, Olin J, Akasaka T, et al. Acute coronary syndromes without coronary plaque rupture. Nat Rev Cardiol. 2016;13:257–65.CrossRefPubMedGoogle Scholar
  13. 13.
    Prati F, Uemura S, Souteyrand G, Virmani R, Motreff P, Di Vito L, et al. OCT-based diagnosis and management of STEMI associated with intact fibrous cap. JACC Cardiovasc Imaging. 2013;6:283–7.CrossRefPubMedGoogle Scholar
  14. 14.
    Holmes DR Jr, Lerman A, Moreno PR, King SB 3rd, Sharma SK. Diagnosis and management of STEMI arising from plaque erosion. JACC Cardiovasc Imaging. 2013;6:290–6.CrossRefPubMedGoogle Scholar
  15. 15.
    Braunwald E. Coronary plaque erosion: recognition and management. JACC Cardiovasc Imaging. 2013;6:288–9.CrossRefPubMedGoogle Scholar
  16. 16.
    Kamran M, Guptan A, Bogal M. Spontaneous coronary artery dissection: case series and review. J Invasive Cardiol. 2008;20:553–9.PubMedGoogle Scholar
  17. 17.
    Aqel RA, Zoghbi GJ, Iskandrian A. Spontaneous coronary artery dissection, aneurysms, and pseudoaneurysms: a review. Echocardiography. 2004;21:175–82.CrossRefPubMedGoogle Scholar
  18. 18.
    Jorgensen MB, Aharonian V, Mansukhani P, Mahrer PR. Spontaneous coronary dissection: a cluster of cases with this rare finding. Am Heart J. 1994;127:1382–7.CrossRefPubMedGoogle Scholar
  19. 19.
    Manalo-Estrella P, Barker AE. Histopathologic findings in human aortic media associated with pregnancy. Arch Pathol. 1967;83:336–41.PubMedGoogle Scholar
  20. 20.
    Alfonso F, Paulo M, Gonzalo N, Dutary J, Jimenez-Quevedo P, Lennie V, et al. Diagnosis of spontaneous coronary artery dissection by optical coherence tomography. J Am Coll Cardiol. 2012;59:1073–9.CrossRefPubMedGoogle Scholar
  21. 21.
    Roleder T, Sharma R, Kini AS, Moreno P, Sharma SK. Imaging of postpartum coronary artery’s spontaneous dissection treated with stents implantation. Eur Heart J Cardiovasc Imaging. 2013;14:503.CrossRefPubMedGoogle Scholar
  22. 22.
    Egred M, Viswanathan G, Davis GK. Myocardial infarction in young adults. Postgrad Med J. 2005;81:741–5.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Sinicato NA, da Silva Cardoso PA, Appenzeller S. Risk factors in cardiovascular disease in systemic lupus erythematosus. Curr Cardiol Rev. 2013;9:15–9.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Oliva PB, Potts DE, Pluss RG. Coronary arterial spasm in Prinzmetal angina. Documentation by coronary arteriography. N Engl J Med. 1973;288:745–51.CrossRefPubMedGoogle Scholar
  25. 25.
    Roberts WC, Curry RC Jr, Isner JM, Waller BF, McManus BM, Mariani-Costantini R, Ross AM. Sudden death in Prinzmetal’s angina with coronary spasm documented by angiography. Analysis of three necropsy patients. Am J Cardiol. 1982;50:203–10.CrossRefPubMedGoogle Scholar
  26. 26.
    Lanza GA, Careri G, Crea F. Mechanisms of coronary artery spasm. Circulation. 2011;124:1774–82.CrossRefPubMedGoogle Scholar
  27. 27.
    Figueras J, Domingo E, Ferreira I, Lidon RM, Garcia-Dorado D. Persistent angina pectoris, cardiac mortality and myocardial infarction during a 12 year follow-up in 273 variant angina patients without significant fixed coronary stenosis. Am J Cardiol. 2012;110:1249–55.CrossRefPubMedGoogle Scholar
  28. 28.
    Kobayashi N, Takano M, Hata N, Yamamoto M, Shinada T, Takahashi Y, et al. Optical coherence tomography findings in a case of acute coronary syndrome caused by coronary vasospasm. Int Heart J. 2010;51:291–2.CrossRefPubMedGoogle Scholar
  29. 29.
    Morikawa Y, Uemura S, Ishigami K, Soeda T, Okayama S, Takemoto Y, et al. Morphological features of coronary arteries in patients with coronary spastic angina: assessment with intracoronary optical coherence tomography. Int J Cardiol. 2011;146:334–40.CrossRefPubMedGoogle Scholar
  30. 30.
    Kohno H, Sueda S, Sakaue T. Separation of the intima-media complex from the adventitia during spontaneous coronary artery spasm documented by intracoronary optical coherence tomography. Int J Cardiol. 2012;154:e4–5.CrossRefPubMedGoogle Scholar
  31. 31.
    Vizzi V, Johnson TW, Jenkins N, Strange JW, Baumbach A. Dynamic separation of coronary artery medial and adventitial layers with vasospasm: new insights using OCT. Int J Cardiol. 2013;167:2344–5.CrossRefPubMedGoogle Scholar
  32. 32.
    Yahagi K, Zarpak R, Sakakura K, Otsuka F, Kutys R, Ladich E, et al. Multiple simultaneous plaque erosion in 3 coronary arteries. JACC Cardiovasc Imaging. 2014;7:1172–4.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Annapoorna Kini
    • 1
  • Jagat Narula
    • 2
  • Yuliya Vengrenyuk
    • 3
  • Samin Sharma
    • 4
  1. 1.Director, Cardiac Catheterization Laboratory, Director, Structural Heart Intervention Program, Director, Interventional Cardiology Fellowship Program, Zena and Michael A. Wiener Professor of MedicineIcahn School of Medicine at Mount Sinai, Mount Sinai HospitalNew YorkUSA
  2. 2.Director, Intravascular Imaging Core Laboratory, Instructor, Department of MedicineIcahn School of Medicine at Mount Sinai, Mount Sinai HospitalNew YorkUSA
  3. 3.Philip J. and Harriet L. Goodhart Chair in Cardiology, Chief of Cardiology, Mount Sinai St. Luke’s Hospital, Professor of Medicine and Radiology, Associate Dean, Arnhold Institute for Global HealthIcahn School of Medicine at Mount Sinai, Mount Sinai HospitalNew YorkUSA
  4. 4.Director, Clinical and Interventional Cardiology, President, Mount Sinai Heart Network, Dean, International Clinical Affiliations, Anandi Lal Sharma Professor of MedicineIcahn School of Medicine at Mount Sinai, Mount Sinai HospitalNew YorkUSA

Personalised recommendations