Advertisement

High-Temperature Latent Heat Storage Technology to Utilize Exergy of Solar Heat and Industrial Exhaust Heat

  • Takahiro Nomura
  • Tomohiro Akiyama
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

To utilize the exergy of solar and industrial exhaust heat, latent heat storage (LHS) using phase change materials (PCM) is quite attractive for its high heat storage capacity, constant-temperature of the heat supply, and repeatable utilization without degradation. In this article, general LHS technology is outlined first; then recent advances in the uses of LHS for high-temperature applications (over 100 °C) are discussed, with respect to each type of PCM (e.g., sugar alcohol, molten salt, and alloy). The prospects of future LHS technology are discussed regarding exergy.

Keywords

Thermal energy storage Latent heat storage Phase change material (PCM) Solar energy Exhaust heat 

Notes

Acknowledgments

This research was partially supported by the Japan Science and Technology (JST) agency, Strategic International Collaborative Research Program (SICORP).

References

  1. Acem, Z., Lopez, J., Del Barrio, E.P.: KNO3/NaNO 3–graphite materials for thermal energy storage at high temperature: part I.–elaboration methods and thermal properties. Appl. Therm. Eng. 30, 1580–1585 (2010)CrossRefGoogle Scholar
  2. Bayón, R., Rojas, E., Valenzuela, L., Zarza, E., León, J.: Analysis of the experimental behaviour of a 100 kWth latent heat storage system for direct steam generation in solar thermal power plants. Appl. Therm. Eng. 30, 2643–2651 (2010)CrossRefGoogle Scholar
  3. Gil, A., Oró, E., Peiró, G., Álvarez, S., Cabeza, L.F.: Material selection and testing for thermal energy storage in solar cooling. Renew. Energy. 57, 366–371 (2013)CrossRefGoogle Scholar
  4. Guillot, S., Faik, A., Rakhmatullin, A., Lambert, J., Veron, E., Echegut, P., Bessada, C., Calvet, N., Py, X.: Corrosion effects between molten salts and thermal storage material for concentrated solar power plants. Appl. Energy. 94, 174–181 (2012)CrossRefGoogle Scholar
  5. Hidaka, H., Yamazaki, M., Yabe, M., Kakiuchi, H., Ona, E.P., Hirano, S., Saitoh, T., Oya, M., Yamazaki, M.: Long-term supercooled thermal energy storage (thermophysical properties of disodium hydrogenphosphate 12H2O). In: Energy Conversion Engineering Conference and Exhibit, 2000 (IECEC) 35th Intersociety: IEEE, pp. 1013–1018, Las Vegas, NV, USA (2000)Google Scholar
  6. Ishida, M.: Thermodynamics Made Comprehensible. Nova Science Publishers, Inc., New York (2002)Google Scholar
  7. Izquierdo-Barrientos, M., Sobrino, C., Almendros-Ibáñez, J.: Thermal energy storage in a fluidized bed of PCM. Chem. Eng. J. 230, 573–583 (2013)CrossRefGoogle Scholar
  8. Japan Society of Thermopysical property: Handbook of Thermal Analysis (Sinpen Netsubunseki Handbook in Japanese). Yokendou, Tokyo (2008)Google Scholar
  9. Kaizawa, A., Kamano, H., Kawai, A., Jozuka, T., Senda, T., Maruoka, N., Akiyama, T.: Thermal and flow behaviors in heat transportation container using phase change material. Energy Convers. Manag. 49, 698–706 (2008a)CrossRefGoogle Scholar
  10. Kaizawa, A., Maruoka, N., Kawai, A., Kamano, H., Jozuka, T., Senda, T., Akiyama, T.: Thermophysical and heat transfer properties of phase change material candidate for waste heat transportation system. Heat Mass Transf. 44, 763–769 (2008b)CrossRefGoogle Scholar
  11. Kakiuchi, H., Yamazaki, M., Yabe, M., Chihara, S., Terunuma, T., Sakata, Y., Usami, T.: A study of erythritol as phase change material. IEA Annex. 10, 11–13 (1998)Google Scholar
  12. Kenisarin, M.M.: High-temperature phase change materials for thermal energy storage. Renew. Sust. Energ. Rev. 14, 955–970 (2010)CrossRefGoogle Scholar
  13. Kojima, Y., Matsuda, H.: New PCMs prepared from erythritol-polyalcohols mixtures for latent heat storage between 80 and 100° C. J. Chem. Eng. Jpn. 37, 1155–1162 (2004)CrossRefGoogle Scholar
  14. Kotzé, J.P., Von Backström, T., Erens, P.: Simulation and testing of a latent heat thermal energy storage unit with metallic phase change material. Energy Procedia. 49, 860–869 (2014)CrossRefGoogle Scholar
  15. Laing, D., Bahl, C., Bauer, T., Lehmann, D., Steinmann, W.D.: Thermal energy storage for direct steam generation. Sol. Energy. 85, 627–633 (2011)CrossRefGoogle Scholar
  16. Liu, M., Saman, W., Bruno, F.: Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems. Renew. Sust. Energ. Rev. 16, 2118–2132 (2012)CrossRefGoogle Scholar
  17. Maruoka, N., Akiyama, T.: Exergy recovery from steelmaking off-gas by latent heat storage for methanol production. Energy. 31, 1632–1642 (2006)CrossRefGoogle Scholar
  18. Mathur, A., Kasetty, R., Oxley, J., Mendez, J., Nithyanandam, K.: Using encapsulated phase change salts for concentrated solar power plant. Energy Procedia. In: Proceedings of Solar PACES, pp. 17–20, Las Vegas, NV, USA (2013)Google Scholar
  19. Nomura, T., Okinaka, N., Akiyama, T.: Technology of Latent Heat Storage for high temperature application: a review. ISIJ Int. 50, 1229–1239 (2010)CrossRefGoogle Scholar
  20. Nomura, T., Zhu, C., Sagara, A., Okinaka, N., Akiyama, T.: Estimation of thermal endurance of multicomponent sugar alcohols as phase change materials. Appl. Therm. Eng. 75, 481–486 (2015a)CrossRefGoogle Scholar
  21. Nomura, T., Sagara, A., Zhu, C., Okinaka, N., Akiyama, T.: Heat storage performance of Al-base alloy as phase change material (In Japanese). In: Proceeding of 51th National Heat Transfer Symposium of Japan, Hamamatsu, Japan, May/21-23 (2014)Google Scholar
  22. Nomura, T., Zhu, C., Sheng, N., Saito, G., Akiyama, T.: Microencapsulation of metal-based phase change material for high-temperature thermal energy storage. Sci. Rep. 5, 9117 (2015).  https://doi.org/10.1038/srep091171
  23. Oya, T., Nomura, T., Tsubota, M., Okinaka, N., Akiyama, T.: Thermal conductivity enhancement of erythritol as PCM by using graphite and nickel particles. Appl. Therm. Eng. 61, 825–828 (2013)CrossRefGoogle Scholar
  24. Pacheco, J.E., Showalter, S.K., Kolb, W.J.: Development of a molten-salt thermocline thermal storage system for parabolic trough plants. Transaction-American Society of Mechanical Engineers Jounal of Solar Energy Engineering. 124, 153–159 (2002)Google Scholar
  25. Pincemin, S., Olives, R., Py, X., Christ, M.: Highly conductive composites made of phase change materials and graphite for thermal storage. Sol. Energy Mater. Sol. Cells. 92, 603–613 (2008)CrossRefGoogle Scholar
  26. Rellso, S., Delgado, E.: Experience with molten salt thermal storage in a commercial parabolic trough plant. ANDASOL-1 Commissioning and Operation. In: SolarPACES, Berlin, Germany (2009)Google Scholar
  27. Sagara, A., Nomura, T., Tsubota, M., Okinaka, N., Akiyama, T.: Improvement in thermal endurance of D-mannitol as phase-change material by impregnation into nanosized pores. Mater. Chem. Phys. 146, 253–260 (2014)CrossRefGoogle Scholar
  28. Tsutsumi, A.: Advanced IGCC/IGFC using exergy recuperation technology. CCT J. 11, 17–22 (2004)Google Scholar
  29. Tsutumi, A., Yoshida, K.: Exergy engineering. Kyoritsu syuppan, Tokyo (1999)Google Scholar
  30. Yamagishi, Y., Takeuchi, H., Pyatenko, A.T., Kayukawa, N.: Characteristics of microencapsulated PCM slurry as a heat transfer fluid. AICHE J. 45, 696–707 (1999)CrossRefGoogle Scholar
  31. Zhang, G., Li, J., Chen, Y., Xiang, H., Ma, B., Xu, Z., Ma, X.: Encapsulation of copper-based phase change materials for high temperature thermal energy storage. Sol. Energy Mater. Sol. Cells. 128, 131–137 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center for Advanced Research of Energy and MaterialsHokkaido UniversitySapporoJapan

Personalised recommendations