Advertisement

Heat and Mass Transfer During Hydriding

  • F. Askri
  • A. Jemni
  • P. de Rango
  • P. Marty
  • S. Ben Nasrallah
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

The hydrogen economy is a proposed scheme and technique of delivering energy using hydrogen. The hydrogen economy is committed to eliminate all of the problems that the fossil fuel economy creates. The advantages of the hydrogen economy consist of (Marban and Valdes-Solis 2007): (i) the elimination of pollution caused by fossil fuels, since the conversion technologies of hydrogen into energy are completely clean; (ii) the elimination of greenhouse gases, if hydrogen is produced using clean energy sources; and (iii) distributed production as hydrogen can be produced almost anywhere worldwide. However, the hydrogen economy faces several technological barriers before implementation such as the storage issues. The hydrogen storage in gaseous or liquid form presents serious safety concerns and requires high-energy input. The hydrogen storage in solid form, namely, reversible metal hydrides, is much safer and requires low-pressure conditions. Research on the design and performance optimization of the metal hydride tanks (MHT for short) is essential for the efficient operation of corresponding systems, thus considerable efforts are made in that regard.

Notes

Acknowledgments

The authors are grateful to the invitation support provided by the Joseph Fourier University of Grenoble and the discussions with the staffs at the CRETA and LEGI laboratories.

Reference

  1. Askri, F., Jemni, A., Ben Nasrallah, S.: Study of two-dimensional and dynamic heat and mass transfer in a metal-hydrogen reactor. Int. J. Hydrog. Energy. 28, 537–557 (2003)CrossRefGoogle Scholar
  2. Bao, Z., Yang, F., Wu, Z., Cao, X., Zhang, Z.: Simulation studies on heat and mass transfer in high-temperature magnesium hydride reactors. Appl. Energy. 112, 1181–1189 (2013)CrossRefGoogle Scholar
  3. Ben Maad, H., Askri, F., Ben Nasrallah, S.: Numerical investigation of heat and mass transfer during desorption process of an Mg2Ni-H2. Int. J. Hydrog. Energy. 38, 4597–4610 (2013)CrossRefGoogle Scholar
  4. Bershadsky, E., Josephy, Y., Ron, M.: Permeability and thermal conductivity of porous metallic matrix hydride compacts. Journal of the Less Common Metals. 153, 65–78 (1989)CrossRefGoogle Scholar
  5. Botzung, M., Chaudourne, S., Gillia, O., Perret, C., Latroche, M., Percheron-Guegan, A., Marty, P.: Simulation and experimental validation of a hydrogen storage tank with metal hydrides. Int. J. Hydrog. Energy. 33, 98–104 (2008)CrossRefGoogle Scholar
  6. Chaise, A., Marty, P., deRango, P., Fruchart, D.: A simple criterion for estimating the effect of pressure gradient during hydrogen absorption in a hydride reactor. Int. J. Hydrog. Energy. 52, 4564–4572 (2009)MATHGoogle Scholar
  7. Chaise, A., De Rango, P., Marty, P., Fruchart, D.: Experimental and numerical study of a magnesium hydride tank. Int. J. Hydrog. Energy. 35, 6311–6322 (2010)CrossRefGoogle Scholar
  8. Dehbouche, Z., Grimard, N., Laurencelle, F., Goyette, J., Bose, T.K.: Hydride alloys properties investigation for hydrogen sorption compressor. J. Alloy. Compd. 399, 224–236 (2005)CrossRefGoogle Scholar
  9. Kaplan, Y.: Effect of design parameters on enhancement of hydrogen charging in mental hydride reactors. Int. J. Hydrog. Energy. 34, 2288–2294 (2009)CrossRefGoogle Scholar
  10. Kim, K.J., Fekdman, K.T., Razani, A.: Cooling and power efficiency diagrams for compressor-driven metal-hydride slurry air conditioners. Energy. 22, 787–796 (1997)CrossRefGoogle Scholar
  11. Kim, K.J., Mongtoya, B., Razani, A., Lee, K.-H.: Metal hydride compacts of improved thermal conductivity. Int. J. Hydrog. Energy. 26, 609–613 (2001)CrossRefGoogle Scholar
  12. Klein, H.P., Groll, M.: Heat transfer characteristics of expanded graphite matrices in metal hydride beds. Int. J. Hydrog. Energy. 29, 1503–1511 (2004a)CrossRefGoogle Scholar
  13. Klein, H.P., Groll, M.: Heat transfer characteristics of expanded graphite matrices in metal hydride beds. Int. J. Hydrog. Energy. 29, 1503–1511 (2004b)CrossRefGoogle Scholar
  14. Macdonald, B.D., Rowe, A.M.: Experimental and numerical analysis of dynamic metal hydride hydrogen storage systems. J. Power Sources. 174, 282–293 (2007)CrossRefGoogle Scholar
  15. Marban, G., Valdes-Solis, T.: Towards the hydrogen economy? Int. J. Hydrog. Energy. 32, 1625–1637 (2007)CrossRefGoogle Scholar
  16. Mellouli, S., Dhaou, H., Askri, F., Jemni, A., Ben Nasrallah, S.: Hydrogen storage in metal hydride tanks equipped with metal foam heat exchanger. Int. J. Hydrog. Energy. 34, 9393–9401 (2009)CrossRefGoogle Scholar
  17. Noumura, K., Fujiwara, S., Hayakawa, H., Akiba, E., Ishido, Y., Ono, S.: Magnesium-nickel alloy hydride compacts prepared by cylindrical explosion shock compression. Journal of the less Common Metals. 168, 9–17 (1991)CrossRefGoogle Scholar
  18. Pohlmann, C., Rontzsch, L., Weibgarber, T., Kieback, B.: Heat and gas transport properties in pelletized hydride-graphite-composites for hydrogen storage applications. Int. J. Hydrog. Energy. 38, 1685–1691 (2013)CrossRefGoogle Scholar
  19. Sanchez, A.R., Klein, H.P., Groll, M.: Expanded graphite as heat transfer matrix in metal hydride beds. Int. J. Hydrog. Energy. 28, 515–527 (2003)CrossRefGoogle Scholar
  20. Supper, W., Groll, M., Mayer, U.: Reaction kinetics in metal hydride reaction beds with improved heat and mass transfer. Journal of the Less Common Metal. 104, 279–286 (1984)CrossRefGoogle Scholar
  21. Veerraju, C., Ram Gopal, M.: Heat and mass transfer studies on plate fin-and-elliptical tube type metal hydride reactors. Appl. Therm. Eng. 30, 673–682 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • F. Askri
    • 1
    • 2
  • A. Jemni
    • 2
  • P. de Rango
    • 3
  • P. Marty
    • 4
  • S. Ben Nasrallah
    • 2
  1. 1.Faculty of EngineeringKing Khalid UniversityAbhaSaudi Arabia
  2. 2.Laboratoire d’Etudes des Systèmes Thermiques et EnergétiquesEcole Nationale d’Ingénieurs de Monastir, Université de MonastirMonastirTunisie
  3. 3.CRETA-CNRSGrenobleFrance
  4. 4.LEGI, UJF-Grenoble/Grenoble-INP/CNRSGrenobleFrance

Personalised recommendations