Advertisement

Characteristic of Savonius Vertical Axis Rotor in Water Channel

  • Ibrahim Mabrouki
  • Zied Driss
  • Mohamed Salah Abid
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

According to the literature review, we can conclude that the study of the hydrodynamic structure flow around Savonius hydroturbine is very interesting. In the present paper, we are interested in studying the hydrodynamic structure flow around Savonius rotor. The remaining was organized as follows: Sect. 2 defined and discussed the description of our problem. Section 3, however, was devoted to numerical approach. In Sect. 4, our numerical results were detailed, and then we compared them with our experimental results. Finally, our conclusions were drawn in Sect. 5.

Keywords

Savonius rotor Test bench CFD URANS Sliding mesh 

References

  1. Ameur, K., Masson, C., Eecen, P.: 2D and 3D numerical simulation of the wind-rotor/nacelle interaction in an atmospheric boundary layer. J. Wind Eng. Ind. Aerodyn. 99, 833–844 (2011)CrossRefGoogle Scholar
  2. Bartosiewicz, Y., Laviéville, J., Seynhaeve, J.: A first assessment of the NEPTUNE_CFD code: instabilities in a stratified flow comparison between the VOF method and a two-field approach. Int. J. Heat Fluid Flow. 29, 460–478 (2008)CrossRefGoogle Scholar
  3. Bestion, D.: The difficult challenge of a two-phase CFD modelling for all flow regimes. Nucl. Eng. Des. 279, 116–125 (2014)CrossRefGoogle Scholar
  4. Bhuyan, S., Biswas, A.: Investigations on self-starting and performance characteristics of simple H and hybrid H-Savonius vertical axis wind rotors. Energy Convers. Manag. 87, 859–867 (2014)CrossRefGoogle Scholar
  5. Bikas, G., Ramesh, H., Vijaykumar, H.: Study on performance of Savonius rotor type wave energy converter used in conjunction conventional rubble mound break water. Ocean Eng. 89, 62–68 (2014)CrossRefGoogle Scholar
  6. Borg, M., Shires, A., Collu, M.: Offshore floating vertical axis wind turbines, dynamics modeling state of the art. Part I Aerodyn. Renew. Sustain. Energ. Rev. 39, 1214–1225 (2014)CrossRefGoogle Scholar
  7. Conlisk, A.: Modern helicopter rotor aerodynamics. Prog. Aerosp. Sci. 37, 419–476 (2001)CrossRefGoogle Scholar
  8. Denner, F., Wachem, B.: Compressive VOF method with skewness correction to capture sharp interfaces on arbitrary meshes. J. Comput. Phys. 279, 127–144 (2014)MathSciNetCrossRefGoogle Scholar
  9. Driss, Z., Mlayeh, O., Driss, D., Maaloul, M., Abid, M.S.: Numerical simulation and experimental validation of the turbulent flow around a small incurved Savonius wind rotor. Energy. 74, 506–517 (2014)CrossRefGoogle Scholar
  10. Faizal, M., Ahmed, M., Lee, Y.: On utilizing the orbital motion in water waves to drive a Savonius rotor. Renew. Energy. 35, 164–169 (2010)CrossRefGoogle Scholar
  11. Ferrer, E., Willden, R.: A high order discontinuous Galerkin – Fourier incompressible 3D Navier–Stokes solver with rotating sliding meshes. J. Comput. Phys. 231, 7037–7056 (2012)MathSciNetCrossRefGoogle Scholar
  12. Gnesin, V., Kolodyazhnaya, L., Rzadkowski, R.: A numerical modeling of stator–rotor interaction in a turbine stage with oscillating blades. J. Fluids Struct. 19, 1141–1153 (2004)CrossRefGoogle Scholar
  13. Guo, B., Guo, C.: The convergence of non-Newtonian fluids to Navier–Stokes equations. J. Math. Anal. Appl. 357, 468–478 (2009)MathSciNetCrossRefGoogle Scholar
  14. Guo, L., Sun, D., Wu, H.: A new numerical wave flume combining the 0–1 type BEM and the VOF method. J. Hydrodyn. Ser. B. 24, 506–517 (2012)CrossRefGoogle Scholar
  15. Hongjun, Y., Hongzhi, L., Jiezeng, Q., Fanpei, L.: Global existence of strong solutions of Navier-Stokes equations with non-Newtonian potential for one-dimensional isentropic compressible fluids. Acta Math. Sci. 32, 1467–1486 (2012)MathSciNetCrossRefGoogle Scholar
  16. Iris, P., Franco, M., Martin, G.: Numerical noise prediction in fluid machinery. J. Therm. Sci. 14, 230–236 (2005)CrossRefGoogle Scholar
  17. Jin, X., Zhao, G., Gao, K., Ju, W.: Darrieus vertical axis wind turbine: basic research methods. Renew. Sust. Energ. Rev. 42, 212–225 (2015)CrossRefGoogle Scholar
  18. Kröner, D., Růžička, M., Toulopoulos, I.: Local discontinuous Galerkin numerical solutions of non-Newtonian incompressible flows modeled by p-Navier–Stokes equations. J. Comput. Phys. 270, 182–202 (2014)MathSciNetCrossRefGoogle Scholar
  19. Liu, H., Yuan, H., Qiao, J., Li, F.: Global existence of strong solutions of Navier–Stokes equations with non-Newtonian potential for one-dimensional isentropic compressible fluids. Nonlinear Anal. Theory Methods Appl. 74, 5876–5891 (2011)MathSciNetCrossRefGoogle Scholar
  20. Mabrouki, I., Driss, Z., Abid, M.S.: Performance analysis of a water Savonius rotor: effect of the internal overlap. Sustain. Energy. 2, 121–125 (2014a)Google Scholar
  21. Mabrouki, I., Driss, Z., Abid, M.S.: Numerical study of the hydrodynamic structure of a water Savonius rotor in a test section. Jordan J. Mech. Indust. Eng. 8, 127–136 (2014b)Google Scholar
  22. Málek, J., Rajagopal, K.: Chapter 5 mathematical issues concerning the Navier-Stokes equations and some of its generalizations. Handb. Differ. Equ. Evol. Equ. 2, 371–459 (2006)zbMATHGoogle Scholar
  23. Malgarinos, I., Nikolopoulos, N., Marengo, M., Antonini, C., Gavaises, M.: VOF simulations of the contact angle dynamics during the drop spreading: standard models and a new wetting force model. Adv. Colloid Interf. Sci. 21, 21–20 (2014)Google Scholar
  24. Md, K., Prasad, B., Rahman, N.: Numerical simulation of free surface water wave for the flow around NACA 0015 hydrofoil using the volume of fluid (VOF) method. Ocean Eng. 78, 89–94 (2014)CrossRefGoogle Scholar
  25. Shen, L., Chan, E.: Numerical simulation of nonlinear dispersive waves propagating over a submerged bar by IB–VOF model. Ocean Eng. 38, 319–328 (2011)CrossRefGoogle Scholar
  26. Shouichiro, I., Yusuke, K., Fuminori, U., Eiichi, S., Toshihiko, I.: Influence of setting condition on characteristics of Savonius hydraulic turbine with a shield plate. J. Therm. Sci. 20, 224–228 (2011)CrossRefGoogle Scholar
  27. Sun, Z., Xu, L.: Computational fluid dynamics in coronary artery disease. Comput. Med. Imaging Graph. 38, 651–663 (2014)CrossRefGoogle Scholar
  28. Tessarotto, M., Cremaschini, C.: Mathematical properties of the Navier–Stokes dynamical system for incompressible Newtonian fluids. Phys. A Stat. Mech. Appl. 392, 3962–3968 (2013)MathSciNetCrossRefGoogle Scholar
  29. Tjiu, W., Marnoto, T., Mat, S., Ruslan, M., Sopian, K.: Darrieus vertical axis wind turbine for power generation I: assessment of Darrieus VAWT configurations. Renew. Energy. 75, 50–67 (2015)CrossRefGoogle Scholar
  30. Torresi, M., Fabio, A., Fortunato, B., Sergio, M.: Performance and flow field evaluation of a Savonius rotor tested in a wind tunnel. Energy Procedia. 45, 207–216 (2014)CrossRefGoogle Scholar
  31. Vincent, S., Brändle, J.C., Sarthou, A., Estivalezes, J., Simonin, O., Climent, E.: A Lagrangian VOF tensorial penalty method for the DNS of resolved particle-laden flows. J. Comput. Phys. 256, 582–614 (2014)MathSciNetCrossRefGoogle Scholar
  32. Wang, Z., Yu, X., Liu, F., Feng, Q., Tan, Q.: Dynamic analyses for the rotor-journal bearing system of a variable speed rotary compressor. Int. J. Refrig. 36, 1938–1950 (2013)CrossRefGoogle Scholar
  33. Xu, Y., Liu, M., Tang, C.: Three-dimensional CFD–VOF–DPM simulations of effects of low-holdup particles on single-nozzle bubbling behavior in gas–liquid–solid systems. Chem. Eng. J. 222, 292–306 (2013)CrossRefGoogle Scholar
  34. Yang, C., Löhner, R., Lu, H.: An unstructured-grid based volume-of-fluid method for extreme wave and freely-floating structure interactions. J. Hydrodyn. Ser. B. 18, 415–422 (2006)CrossRefGoogle Scholar
  35. Yen, J., Ahmed, N.: Improving safety and performance of small-scale vertical Axis wind turbines. Proc. Eng. 49, 99–106 (2012)CrossRefGoogle Scholar
  36. Yeoh, S.L., Papadakis, G., Yianneskis, M.: Numerical simulation of turbulent flow characteristics in a stirred vessel using the LES and RANS approaches with the sliding/deforming mesh methodology. Chem. Eng. Res. Des. 82, 834–848 (2004)CrossRefGoogle Scholar
  37. Zhao, M., Cao, Y.: Numerical simulation of rotor flow field based on overset grids and several spatial and temporal discretization schemes. Chin. J. Aeronaut. 25, 155–163 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ibrahim Mabrouki
    • 1
  • Zied Driss
    • 1
  • Mohamed Salah Abid
    • 1
  1. 1.Laboratory of Electro-Mechanic Systems (LASEM), National School of Engineers of Sfax (ENIS), University of SfaxSfaxTunisia

Personalised recommendations