Supporting Visual Data Exploration via Interactive Constraints

  • Wendy LucasEmail author
  • Taylor Gordon
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 743)


This work aims to bridge the gap between the goals of the users of information visualization systems and the techniques that are currently available to them for interacting with force-directed layouts. We propose that the benefits from applying positional constraints to graphical objects extend beyond their typical use in network graphs. In particular, a constraint-based approach can be an effective means for aiding users in exploring multivariate data that, by its nature, is difficult to present effectively. Providing easy to use and understand slider components for specifying the strength of constraints applied in a layout gives users the ability to subtly control graphic object positioning. Objects can be filtered and automatically grouped based on the value of one or more properties, with each property representing a different data variable. Applying different constraint strengths to these groups provides an effective means for identifying commonalities and patterns in multivariate data.


Force-directed layouts Interactive data exploration Constraint specification Multivariate data 


  1. 1.
    Lucas, W., Gordon, T.: User control of force-directed layouts. In: 11th International Joint Conference on Software Technologies, vol. 1, pp. 91–99 (2016)Google Scholar
  2. 2.
    Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM 46(5), 604–632 (1999)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Srivastava, J., Cooley, R., Deshpande, M., Tan, P.-N.: Web usage mining: discovery and applications of usage patterns from web data. ACM SIGKDD Explor. Newsl. 1(2), 12–23 (2000)CrossRefGoogle Scholar
  4. 4.
    Heer, J., Bostock, M., Ogievetsky, V.: A tour through the visualization zoo. Commun. ACM 53(6), 59–67 (2010)CrossRefGoogle Scholar
  5. 5.
    Pantazos, P., Lauesen, S.: Constructing visualizations with InfoVis tools – an evaluation from a user perspective. In: International Conference on Information Visualization Theory and Applications, pp. 731–736 (2012)Google Scholar
  6. 6.
    Shneiderman, B.: Creativity support tools: accelerating discovery and innovation. Commun. ACM 50(12), 20–32 (2007)CrossRefGoogle Scholar
  7. 7.
    Lucas, W., Shieber, S.M.: A simple language for novel visualizations of information. In: Filipe, J., Shishkov, B., Helfert, M., Maciaszek, L.A. (eds.) ENASE/ICSOFT 2007. CCIS, vol. 22, pp. 33–45. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-88655-6_3CrossRefGoogle Scholar
  8. 8.
    Lucas, W.: An interactive approach to constraint-based visualizations. In: Yamamoto, S. (ed.) HCI 2014. LNCS, vol. 8521, pp. 54–63. Springer, Cham (2014). doi: 10.1007/978-3-319-07731-4_6CrossRefGoogle Scholar
  9. 9.
    Ryall, K., Marks, J., Shieber, S.M.: An interactive constraint-based system for drawing graphs. In: 10th Annual Symposium on User Interface Software and Technology, pp. 97–104. ACM Press (1997)Google Scholar
  10. 10.
    Dwyer, T., Marriott, K., Schreiber, F., Stuckey, P., Woodward, M., Wybrow, M.: Exploration of networks using overview+detail with constraint-based cooperative layout. IEEE Trans. Visual. Comput. Graph. 14(6), 1293–1300 (2008)CrossRefGoogle Scholar
  11. 11.
    Dwyer, T., Marriott, K., Wybrow, M.: Dunnart: a constraint-based network diagram authoring tool. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 420–431. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-00219-9_41CrossRefzbMATHGoogle Scholar
  12. 12.
    Yi, J.S., Kang, Y.A., Stasko, J.: Jacko. J.: Toward a deeper understanding of the role of interaction in information visualization. IEEE Trans. Visual. Comput. Graph. 13(6), 1224–1231 (2007)Google Scholar
  13. 13.
    Shneiderman, B.: Dynamic queries for visual information seeking. IEEE Softw. 11, 70–77 (1994)CrossRefGoogle Scholar
  14. 14.
    Heer, J., Shneiderman, B.: Interactive dynamics for visual analysis. Commun. ACM 55(4), 45–54 (2012)CrossRefGoogle Scholar
  15. 15.
    Shneiderman, B.: The eyes have it: a task by data type taxonomy for information visualizations. In: IEEE Symposium on Visual Languages, pp. 336. IEEE Computer Society (1996)Google Scholar
  16. 16.
    Ahlberg, C.: Spotfire: an information exploration environment. SIGMOD Rec. 25(4), 25–29 (1996)CrossRefGoogle Scholar
  17. 17.
    Yi, J.S., Melton, R., Stasko, J.T., Jacko, J.A.: Dust & magnet: multivariate information visualization using a magnet metaphor. Inf. Visual. 4, 239–256 (2005)CrossRefGoogle Scholar
  18. 18.
    Anscombe, F.J.: Graphs in statistical analysis. Am. Stat. 27(1), 17–21 (1973)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Bentley UniversityWalthamUSA

Personalised recommendations