Advertisement

Occipitocervical Fusion: An Updated Review

  • Nabeel S. Ashafai
  • Massimiliano Visocchi
  • Norbert Wąsik
Chapter
Part of the Acta Neurochirurgica Supplement book series (NEUROCHIRURGICA, volume 125)

Abstract

Occipitocervical fusion (OCF) is indicated for instability at the craniocervical junction (CCJ). Numerous surgical techniques, which evolved over 90 years, as well as unique anatomic and kinematic relationships of this region present a challenge to the neurosurgeon. The current standard involves internal rigid fixation by polyaxial screws in cervical spine, contoured rods and occipital plate. Such approach precludes the need of postoperative external stabilization, lesser number of involved spinal segments, and provides 95–100% fusion rates. New surgical techniques such as occipital condyle screw or transarticular occipito-condylar screws address limitations of occipital fixation such as variable lateral occipital bone thickness and dural sinus anatomy. As the C0–C1–C2 complex is the most mobile portion of the cervical spine (40% of flexion-extension, 60% of rotation and 10% of lateral bending) stabilization leads to substantial reduction of neck movements. Preoperative assessment of vertebral artery anatomical variations and feasibility of screw insertion as well as visualization with intraoperative fluoroscopy are necessary. Placement of structural and supplemental bone graft around the decorticated bony elements is an essential step of every OCF procedure as the ultimate goal of stabilization with implants is to provide immobilization until bony fusion can develop.

Keywords

Occipitocervical fusion Occipitocervical fixation Surgical techniques 

Notes

Competing Interests

The authors declare that they have no competing interests.

Compliance with Ethical Standards

No financial support was received for this work.

References

  1. 1.
    Benzel EC. The cervical spine. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2012.Google Scholar
  2. 2.
    Ebraheim NA, Lu J, Biyani A, Brown JA, Yeasting RA. An anatomic study of the thickness of the occipital bone. Spine (Phila Pa 1976). 1996;21(15):1725–9.  https://doi.org/10.1097/00007632-199608010-00002.CrossRefGoogle Scholar
  3. 3.
    Roberts DA, Doherty BJ, Heggeness MH. Quantitative anatomy of the occiput and the biomechanics of occipital screw fixation. Spine (Phila Pa 1976). 1998;23(10):1100–7.  https://doi.org/10.1097/00007632-199805150-00005.CrossRefGoogle Scholar
  4. 4.
    Yeom JS, Buchowski JM, Kim HJ, Chang BS, Lee CK, Riew KD. Risk of vertebral artery injury: comparison between C1–C2 transarticular and C2 pedicle screws. Spine J. 2013;13(7):775–85.  https://doi.org/10.1016/j.spinee.2013.04.005.CrossRefPubMedGoogle Scholar
  5. 5.
    Baaj AA, Mummaneni PV, Uribe JS, Vaccaro AR, Greenberg MS. Handbook of spine surgery. New York: Thieme Medical Publishers; 2012.Google Scholar
  6. 6.
    Lu DC, Roeser AC, Mummaneni VP, Mummaneni PV. Nuances of occipitocervical fixation. Neurosurgery. 2010;66(Suppl 3):141–6.  https://doi.org/10.1227/01.NEU.0000365744.54102.B9.CrossRefPubMedGoogle Scholar
  7. 7.
    Garrido BJ, Sasso RC. Occipitocervical fusion. Orthop Clin North Am. 2012;43(1):1–9.  https://doi.org/10.1016/j.ocl.2011.08.009.CrossRefPubMedGoogle Scholar
  8. 8.
    Dick JC, Bourgeault CA. Notch sensitivity of titanium alloy, commercially pure titanium, and stainless steel spinal implants. Spine (Phila Pa 1976). 2001;26(15):1668–72.  https://doi.org/10.1097/00007632-200108010-00008.CrossRefGoogle Scholar
  9. 9.
    Kim S, Chang U, Chang J, Kim DH. Posterior stabilization of craniovertebral junction; 2016. doi: https://doi.org/10.1016/B978-1-4160-3367-7.10033-1.
  10. 10.
    Song GC, Cho KS, Yoo DS, Huh PW, Lee SB. Surgical treatment of craniovertebral junction instability: clinical outcomes and effectiveness in personal experience. J Korean Neurosurg Soc. 2010;48(1):37–45.  https://doi.org/10.3340/jkns.2010.48.1.37.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Foerster O. Die Leitungsbahnen Des Schmerzgefuhls Und Die Chirurgischee Behand- Lung Der Schmerzzustande. Berlin: Urbin and Schwarzenberg; 1927.Google Scholar
  12. 12.
    Hurlbert RJ, Crawford NR, Choi WG, Dickman CA. A biomechanical evaluation of occipitocervical instrumentation: screw compared with wire fixation. J Neurosurg. 1999;90(1 Suppl):84–90. http://www.ncbi.nlm.nih.gov/pubmed/10413131 PubMedGoogle Scholar
  13. 13.
    Nockels RP, Shaffrey CI, Kanter AS, Azeem S, York JE. Occipitocervical fusion with rigid internal fixation: long-term follow-up data in 69 patients. J Neurosurg Spine. 2007;7(2):117–23.  https://doi.org/10.3171/SPI-07/08/117.CrossRefPubMedGoogle Scholar
  14. 14.
    Wolfla CE. Anatomical, biomechanical, and practical considerations in posterior occipitocervical instrumentation. Spine J. 2006;6(6 Suppl):225S–32S.  https://doi.org/10.1016/j.spinee.2006.09.001.CrossRefPubMedGoogle Scholar
  15. 15.
    Pait TG, Al-Mefty O, Boop FA, Arnautovic KI, Rahman S, Ceola W. Inside–outside technique for posterior occipitocervical spine instrumentation and stabilization: preliminary results. J Neurosurg. 1999;90(1 Suppl):1–7. http://www.ncbi.nlm.nih.gov/pubmed/10413118 PubMedGoogle Scholar
  16. 16.
    Sandhu FA, Pait TG, Benzel E, Henderson FC. Occipitocervical fusion for rheumatoid arthritis using the inside–outside stabilization technique. Spine (Phila Pa 1976). 2003;28(4):414–9.  https://doi.org/10.1097/01.BRS.0000048460.58471.DB.CrossRefGoogle Scholar
  17. 17.
    Grob D. Transarticular screw fixation for atlanto-occipital dislocation. Spine (Phila Pa 1976). 2001;26(6):703–7.  https://doi.org/10.1097/00007632-200103150-00030.CrossRefGoogle Scholar
  18. 18.
    Uribe JS, Ramos E, Vale F. Feasibility of occipital condyle screw placement for occipitocervical fixation: a cadaveric study and description of a novel technique. J Spinal Disord Tech. 2008;21(8):540–6.  https://doi.org/10.1097/BSD.0b013e31816d655e.CrossRefPubMedGoogle Scholar
  19. 19.
    Uribe JS, Ramos E, Youssef AS, et al. Craniocervical fixation with occipital condyle screws: biomechanical analysis of a novel technique. Spine (Phila Pa 1976). 2010;35(9):931–8.  https://doi.org/10.1097/BRS.0b013e3181c16f9a.CrossRefGoogle Scholar
  20. 20.
    Ahmadian A, Dakwar E, Vale FL, Uribe JS. Occipitocervical fusion via occipital condylar fixation: a clinical case series. J Spinal Disord Tech. 2014;27(4):232–6.  https://doi.org/10.1097/BSD.0b013e31825bfeea.CrossRefPubMedGoogle Scholar
  21. 21.
    Sawin PD, Traynelis VC, Menezes AH. A comparative analysis of fusion rates and donor-site morbidity for autogeneic rib and iliac crest bone grafts in posterior cervical fusions. J Neurosurg. 1998;88(2):255–65.  https://doi.org/10.3171/jns.1998.88.2.0255.CrossRefPubMedGoogle Scholar
  22. 22.
    Lindley TE, Dahdaleh NS, Menezes AH, Abode-Iyamah KO. Complications associated with recombinant human bone morphogenetic protein use in pediatric craniocervical arthrodesis. J Neurosurg Pediatr. 2011;7(5):468–74.  https://doi.org/10.3171/2011.2.PEDS10487.CrossRefPubMedGoogle Scholar
  23. 23.
    Kukreja S, Ambekar S, Sin AH, Nanda A. Occipitocervical fusion surgery: review of operative techniques and results. J Neurol Surg B Skull Base. 2015;76(5):331–9.  https://doi.org/10.1055/s-0034-1543967.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Finn MA, Bishop FS, Dailey AT. Surgical treatment of occipitocervical instability. Neurosurgery. 2008;63(5):961–8.  https://doi.org/10.1227/01.NEU.0000312706.47944.35.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Martinez-del-Campo E, Turner JD, Kalb S, et al. Occipitocervical fixation. Neurosurgery. 2016;79(4):549–60.  https://doi.org/10.1227/NEU.0000000000001340.CrossRefPubMedGoogle Scholar
  26. 26.
    Elia M, Mazzara JT, Fielding JW. Onlay technique for occipitocervical fusion. Clin Orthop Relat Res. 1992;280:170–4. http://www.ncbi.nlm.nih.gov/pubmed/1611738 Google Scholar
  27. 27.
    Winegar CD, Lawrence JP, Friel BC, et al. A systematic review of occipital cervical fusion: techniques and outcomes. J Neurosurg Spine. 2010;13(1):5–16.  https://doi.org/10.3171/2010.3.SPINE08143.CrossRefPubMedGoogle Scholar
  28. 28.
    Visocchi M, Mattogno PP, Signorelli F, Zhong J, Iacopino G, Barbagallo G. Complications in craniovertebral junction instrumentation: hardware removal can be associated with long-lasting stability. Personal experience. Acta Neurochir Suppl. 2017;124:187–94.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Nabeel S. Ashafai
    • 1
  • Massimiliano Visocchi
    • 2
  • Norbert Wąsik
    • 1
    • 3
  1. 1.Alshafai Neurosurgical Academy (ANA)TorontoCanada
  2. 2.Institute of Neurosurgery Catholic University of RomeRomeItaly
  3. 3.Department of NeurosurgeryPoznan University of Medical SciencesPoznanPoland

Personalised recommendations