Cellular Therapy in Transplantation and Tolerance

  • Gavin M. Mason
  • Jayna Patel
  • Leena Halim
  • Niloufar Safinia
  • Giovanna LombardiEmail author


The adoptive transfer of human regulatory T cells (Tregs) in transplantation offers an attractive therapeutic alternative in the current struggle to improve long-term outcomes.

CD4+CD25+FOXP3+ (Tregs) play an important role in immunoregulation and have been shown in animal models to promote transplantation tolerance. Phase I trials in bone marrow transplantation and type I diabetes have already shown that ex vivo expanded Tregs have an excellent safety profile, which is encouraging for their current use as novel therapeutic strategies in solid organ transplantation.

As such, the practicality of Treg adoptive cell therapy is now widely accepted, provided that tailor-made clinical grade procedures for the isolation and ex vivo cell handling are available. Here we present a review on the concept of Treg biology and heterogeneity, the desire to isolate and expand a functionally superior Treg population and report on the effect of differing culture conditions.

We will summarise some of the protocols used for their ex vivo expansion, outline the clinical trials to date and discuss the future directions of Treg cell therapy.


  1. 1.
    Reibke, R., et al. (2006). CD8+ regulatory T cells generated by neonatal recognition of peripheral self-antigen. Proceedings of the National Academy of Sciences of the United States of America, 103(41), 15142–15147.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Haribhai, D., et al. (2007). Regulatory T cells dynamically control the primary immune response to foreign antigen. Journal of Immunology, 178(5), 2961–2972.CrossRefGoogle Scholar
  3. 3.
    Zhang, Z. X., et al. (2000). Identification of a previously unknown antigen-specific regulatory T cell and its mechanism of suppression. Nature Medicine, 6(7), 782–789.PubMedCrossRefGoogle Scholar
  4. 4.
    Monteiro, M., et al. (2010). Identification of regulatory Foxp3+ invariant NKT cells induced by TGF-beta. Journal of Immunology, 185(4), 2157–2163.CrossRefGoogle Scholar
  5. 5.
    Hayday, A., & Tigelaar, R. (2003). Immunoregulation in the tissues by gammadelta T cells. Nature Reviews. Immunology, 3(3), 233–242.PubMedCrossRefGoogle Scholar
  6. 6.
    Miyara, M., & Sakaguchi, S. (2011). Human FoxP3(+)CD4(+) regulatory T cells: Their knowns and unknowns. Immunology and Cell Biology, 89(3), 346–351.PubMedCrossRefGoogle Scholar
  7. 7.
    Sakaguchi, S., et al. (1995). Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. Journal of Immunology, 155(3), 1151–1164.Google Scholar
  8. 8.
    Bennett, C. L., et al. (2001). The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nature Genetics, 27(1), 20–21.PubMedCrossRefGoogle Scholar
  9. 9.
    Hori, S., Nomura, T., & Sakaguchi, S. (2003). Control of regulatory T cell development by the transcription factor Foxp3. Science, 299(5609), 1057–1061.PubMedCrossRefGoogle Scholar
  10. 10.
    Kobayashi, I., et al. (2001). Novel mutations of FOXP3 in two Japanese patients with immune dysregulation, polyendocrinopathy, enteropathy, X linked syndrome (IPEX). Journal of Medical Genetics, 38(12), 874–876.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Le Bras, S., & Geha, R. S. (2006). IPEX and the role of Foxp3 in the development and function of human Tregs. The Journal of Clinical Investigation, 116(6), 1473–1475.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    van der Vliet, H. J., & Nieuwenhuis, E. E. (2007). IPEX as a result of mutations in FOXP3. Clinical & Developmental Immunology, 2007, 89017.Google Scholar
  13. 13.
    Abbas, A. K., et al. (2013). Regulatory T cells: Recommendations to simplify the nomenclature. Nature Immunology, 14(4), 307–308.PubMedCrossRefGoogle Scholar
  14. 14.
    Gupta, S., Shang, W., & Sun, Z. (2008). Mechanisms regulating the development and function of natural regulatory T cells. Archivum Immunologiae et Therapiae Experimentalis (Warsz), 56(2), 85–102.CrossRefGoogle Scholar
  15. 15.
    Miyara, M., et al. (2011). Human FoxP3+ regulatory T cells in systemic autoimmune diseases. Autoimmunity Reviews, 10(12), 744–755.PubMedCrossRefGoogle Scholar
  16. 16.
    Afzali, B., Lechler, R. I., & Hernandez-Fuentes, M. P. (2007). Allorecognition and the alloresponse: Clinical implications. Tissue Antigens, 69(6), 545–556.PubMedCrossRefGoogle Scholar
  17. 17.
    Lindahl, K. F., & Wilson, D. B. (1977). Histocompatibility antigen-activated cytotoxic T lymphocytes. II. Estimates of the frequency and specificity of precursors. The Journal of Experimental Medicine, 145(3), 508–522.PubMedCrossRefGoogle Scholar
  18. 18.
    Lindahl, K. F., & Wilson, D. B. (1977). Histocompatibility antigen-activated cytotoxic T lymphocytes. I. Estimates of the absolute frequency of killer cells generated in vitro. The Journal of Experimental Medicine, 145(3), 500–507.PubMedCrossRefGoogle Scholar
  19. 19.
    Suchin, E. J., et al. (2001). Quantifying the frequency of alloreactive T cells in vivo: New answers to an old question. Journal of Immunology, 166(2), 973–981.CrossRefGoogle Scholar
  20. 20.
    Smyth, L. A., et al. (2006). A novel pathway of antigen presentation by dendritic and endothelial cells: Implications for allorecognition and infectious diseases. Transplantation, 82(1 Suppl), S15–S18.PubMedCrossRefGoogle Scholar
  21. 21.
    Lechler, R. I., Garden, O. A., & Turka, L. A. (2003). The complementary roles of deletion and regulation in transplantation tolerance. Nature Reviews. Immunology, 3(2), 147–158.PubMedCrossRefGoogle Scholar
  22. 22.
    Walsh, P. T., Taylor, D. K., & Turka, L. A. (2004). Tregs and transplantation tolerance. The Journal of Clinical Investigation, 114(10), 1398–1403.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Sakaguchi, S., et al. (2013). The plasticity and stability of regulatory T cells. Nature Reviews. Immunology, 13(6), 461–467.PubMedCrossRefGoogle Scholar
  24. 24.
    Allan, S. E., et al. (2007). Activation-induced FOXP3 in human T effector cells does not suppress proliferation or cytokine production. International Immunology, 19(4), 345–354.PubMedCrossRefGoogle Scholar
  25. 25.
    Liu, W., et al. (2006). CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. The Journal of Experimental Medicine, 203(7), 1701–1711.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Miyara, M., et al. (2009). Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity, 30(6), 899–911.PubMedCrossRefGoogle Scholar
  27. 27.
    Pesenacker, A. M., et al. (2013). CD161 defines the subset of FoxP3+ T cells capable of producing proinflammatory cytokines. Blood, 121(14), 2647–2658.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Afzali, B., et al. (2013). CD161 expression characterizes a subpopulation of human regulatory T cells that produces IL-17 in a STAT3-dependent manner. European Journal of Immunology, 43(8), 2043–2054.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Duhen, T., et al. (2012). Functionally distinct subsets of human FOXP3+ Treg cells that phenotypically mirror effector Th cells. Blood, 119(19), 4430–4440.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Povoleri, G. A., et al. (2013). Thymic versus induced regulatory T cells – Who regulates the regulators? Frontiers in Immunology, 4, 169.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Borsellino, G., et al. (2007). Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: Hydrolysis of extracellular ATP and immune suppression. Blood, 110(4), 1225–1232.PubMedCrossRefGoogle Scholar
  32. 32.
    Sugiyama, D., et al. (2013). Anti-CCR4 mAb selectively depletes effector-type FoxP3+CD4+ regulatory T cells, evoking antitumor immune responses in humans. Proceedings of the National Academy of Sciences of the United States of America, 110(44), 17945–17950.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Tauro, S., et al. (2013). Diversification and senescence of Foxp3+ regulatory T cells during experimental autoimmune encephalomyelitis. European Journal of Immunology, 43(5), 1195–1207.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Deaglio, S., et al. (2007). Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. The Journal of Experimental Medicine, 204(6), 1257–1265.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Guo, F., et al. (2008). CD28 controls differentiation of regulatory T cells from naive CD4 T cells. Journal of Immunology, 181(4), 2285–2291.CrossRefGoogle Scholar
  36. 36.
    Miyara, M., et al. (2015). Sialyl Lewis x (CD15s) identifies highly differentiated and most suppressive FOXP3high regulatory T cells in humans. Proceedings of the National Academy of Sciences of the United States of America, 112(23), 7225–7230.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Takahashi, T., et al. (2000). Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. The Journal of Experimental Medicine, 192(2), 303–310.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Fu, S., et al. (2004). CD4+ CD25+ CD62+ T-regulatory cell subset has optimal suppressive and proliferative potential. American Journal of Transplantation, 4(1), 65–78.PubMedCrossRefGoogle Scholar
  39. 39.
    Henderson, J. G., & Hawiger, D. (2015). Regulation of extrathymic Treg cell conversion by CD5. Oncotarget, 6(29), 26554–26555.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Henderson, J. G., et al. (2015). CD5 instructs extrathymic regulatory T cell development in response to self and tolerizing antigens. Immunity, 42(3), 471–483.PubMedCrossRefGoogle Scholar
  41. 41.
    Nakamura, K., et al. (2004). TGF-beta 1 plays an important role in the mechanism of CD4+CD25+ regulatory T cell activity in both humans and mice. Journal of Immunology, 172(2), 834–842.CrossRefGoogle Scholar
  42. 42.
    Hara, M., et al. (2001). IL-10 is required for regulatory T cells to mediate tolerance to alloantigens in vivo. Journal of Immunology, 166(6), 3789–3796.CrossRefGoogle Scholar
  43. 43.
    Rubtsov, Y. P., et al. (2008). Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunity, 28(4), 546–558.PubMedCrossRefGoogle Scholar
  44. 44.
    McHugh, R. S., et al. (2002). CD4(+)CD25(+) immunoregulatory T cells: Gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Immunity, 16(2), 311–323.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Collison, L. W., et al. (2007). The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature, 450(7169), 566–569.PubMedCrossRefGoogle Scholar
  46. 46.
    Stockis, J., et al. (2009). Membrane protein GARP is a receptor for latent TGF-beta on the surface of activated human Treg. European Journal of Immunology, 39(12), 3315–3322.PubMedCrossRefGoogle Scholar
  47. 47.
    Ito, T., et al. (2008). Two functional subsets of FOXP3+ regulatory T cells in human thymus and periphery. Immunity, 28(6), 870–880.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Fu, S., et al. (2004). TGF-beta induces Foxp3 + T-regulatory cells from CD4 + CD25 - precursors. American Journal of Transplantation, 4(10), 1614–1627.PubMedCrossRefGoogle Scholar
  49. 49.
    Baecher-Allan, C., Wolf, E., & Hafler, D. A. (2006). MHC class II expression identifies functionally distinct human regulatory T cells. Journal of Immunology, 176(8), 4622–4631.CrossRefGoogle Scholar
  50. 50.
    So, T., & Croft, M. (2007). Cutting edge: OX40 inhibits TGF-beta- and antigen-driven conversion of naive CD4 T cells into CD25+Foxp3+ T cells. Journal of Immunology, 179(3), 1427–1430.CrossRefGoogle Scholar
  51. 51.
    Thornton, A. M., et al. (2010). Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells. Journal of Immunology, 184(7), 3433–3441.CrossRefGoogle Scholar
  52. 52.
    Till, B. G., & Press, O. W. (2012). Depletion of Tregs for adoptive T-cell therapy using CD44 and CD137 as selection markers. Immunotherapy, 4(5), 483–485.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Annacker, O., et al. (2005). Essential role for CD103 in the T cell-mediated regulation of experimental colitis. The Journal of Experimental Medicine, 202(8), 1051–1061.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Grossman, W. J., et al. (2004). Human T regulatory cells can use the perforin pathway to cause autologous target cell death. Immunity, 21(4), 589–601.PubMedCrossRefGoogle Scholar
  55. 55.
    Grossman, W. J., et al. (2004). Differential expression of granzymes A and B in human cytotoxic lymphocyte subsets and T regulatory cells. Blood, 104(9), 2840–2848.PubMedCrossRefGoogle Scholar
  56. 56.
    Haas, J., et al. (2007). Prevalence of newly generated naive regulatory T cells (Treg) is critical for Treg suppressive function and determines Treg dysfunction in multiple sclerosis. Journal of Immunology, 179(2), 1322–1330.CrossRefGoogle Scholar
  57. 57.
    Patton, D. T., et al. (2011). The PI3K p110delta regulates expression of CD38 on regulatory T cells. PLoS ONE, 6(3), e17359.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Gondek, D. C., et al. (2005). Cutting edge: Contact-mediated suppression by CD4+CD25+ regulatory cells involves a granzyme B-dependent, perforin-independent mechanism. Journal of Immunology, 174(4), 1783–1786.CrossRefGoogle Scholar
  59. 59.
    Mason, G. M., et al. (2015). Phenotypic complexity of the human regulatory T cell compartment revealed by mass cytometry. Journal of Immunology, 195(5), 2030–2037.CrossRefGoogle Scholar
  60. 60.
    Sakaguchi, S., et al. (2009). Regulatory T cells: How do they suppress immune responses? International Immunology, 21(10), 1105–1111.PubMedCrossRefGoogle Scholar
  61. 61.
    Cao, X., et al. (2007). Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance. Immunity, 27(4), 635–646.PubMedCrossRefGoogle Scholar
  62. 62.
    de la Rosa, M., et al. (2004). Interleukin-2 is essential for CD4+CD25+ regulatory T cell function. European Journal of Immunology, 34(9), 2480–2488.PubMedCrossRefGoogle Scholar
  63. 63.
    Pandiyan, P., et al. (2007). CD4+CD25+Foxp3+ regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T cells. Nature Immunology, 8(12), 1353–1362.PubMedCrossRefGoogle Scholar
  64. 64.
    Dwyer, K. M., et al. (2010). Expression of CD39 by human peripheral blood CD4+ CD25+ T cells denotes a regulatory memory phenotype. American Journal of Transplantation, 10(11), 2410–2420.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Smyth, L. A., et al. (2013). CD73 expression on extracellular vesicles derived from CD4+ CD25+ Foxp3+ T cells contributes to their regulatory function. European Journal of Immunology, 43(9), 2430–2440.PubMedCrossRefGoogle Scholar
  66. 66.
    Sitkovsky, M. V., & Ohta, A. (2005). The 'danger' sensors that STOP the immune response: The A2 adenosine receptors? Trends in Immunology, 26(6), 299–304.PubMedCrossRefGoogle Scholar
  67. 67.
    Cederbom, L., Hall, H., & Ivars, F. (2000). CD4+CD25+ regulatory T cells down-regulate co-stimulatory molecules on antigen-presenting cells. European Journal of Immunology, 30(6), 1538–1543.PubMedCrossRefGoogle Scholar
  68. 68.
    Sakaguchi, S., Wing, K., & Yamaguchi, T. (2009). Dynamics of peripheral tolerance and immune regulation mediated by Treg. European Journal of Immunology, 39(9), 2331–2336.PubMedCrossRefGoogle Scholar
  69. 69.
    Grohmann, U., et al. (2002). CTLA-4-Ig regulates tryptophan catabolism in vivo. Nature Immunology, 3(11), 1097–1101.PubMedCrossRefGoogle Scholar
  70. 70.
    Munn, D. H., et al. (1999). Inhibition of T cell proliferation by macrophage tryptophan catabolism. The Journal of Experimental Medicine, 189(9), 1363–1372.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Belladonna, M. L., et al. (2007). Immunosuppression via tryptophan catabolism: The role of kynurenine pathway enzymes. Transplantation, 84(1 Suppl), S17–S20.PubMedCrossRefGoogle Scholar
  72. 72.
    Liang, B., et al. (2008). Regulatory T cells inhibit dendritic cells by lymphocyte activation gene-3 engagement of MHC class II. Journal of Immunology, 180(9), 5916–5926.CrossRefGoogle Scholar
  73. 73.
    Shalev, I., et al. (2012). Role of regulatory T cells in the promotion of transplant tolerance. Liver Transplantation, 18(7), 761–770.PubMedCrossRefGoogle Scholar
  74. 74.
    Wood, K. J., & Sakaguchi, S. (2003). Regulatory T cells in transplantation tolerance. Nature Reviews. Immunology, 3(3), 199–210.PubMedCrossRefGoogle Scholar
  75. 75.
    Li, W., et al. (2006). The role of Foxp3+ regulatory T cells in liver transplant tolerance. Transplantation Proceedings, 38(10), 3205–3206.PubMedCrossRefGoogle Scholar
  76. 76.
    Graca, L., Cobbold, S. P., & Waldmann, H. (2002). Identification of regulatory T cells in tolerated allografts. The Journal of Experimental Medicine, 195(12), 1641–1646.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Wise, M. P., et al. (1998). Linked suppression of skin graft rejection can operate through indirect recognition. Journal of Immunology, 161(11), 5813–5816.Google Scholar
  78. 78.
    Sanchez-Fueyo, A., et al. (2002). Tracking the immunoregulatory mechanisms active during allograft tolerance. Journal of Immunology, 168(5), 2274–2281.CrossRefGoogle Scholar
  79. 79.
    Li, Y., et al. (2004). Analyses of peripheral blood mononuclear cells in operational tolerance after pediatric living donor liver transplantation. American Journal of Transplantation, 4(12), 2118–2125.PubMedCrossRefGoogle Scholar
  80. 80.
    Demirkiran, A., et al. (2006). Low circulating regulatory T-cell levels after acute rejection in liver transplantation. Liver Transplantation, 12(2), 277–284.PubMedCrossRefGoogle Scholar
  81. 81.
    Tsang, J. Y., et al. (2009). Indefinite mouse heart allograft survival in recipient treated with CD4(+)CD25(+) regulatory T cells with indirect allospecificity and short term immunosuppression. Transplant Immunology, 21(4), 203–209.PubMedCrossRefGoogle Scholar
  82. 82.
    Joffre, O., et al. (2008). Prevention of acute and chronic allograft rejection with CD4+CD25+Foxp3+ regulatory T lymphocytes. Nature Medicine, 14(1), 88–92.PubMedCrossRefGoogle Scholar
  83. 83.
    Golshayan, D., et al. (2007). In vitro-expanded donor alloantigen-specific CD4+CD25+ regulatory T cells promote experimental transplantation tolerance. Blood, 109(2), 827–835.PubMedCrossRefGoogle Scholar
  84. 84.
    Tang, Q., et al. (2004). In vitro-expanded antigen-specific regulatory T cells suppress autoimmune diabetes. The Journal of Experimental Medicine, 199(11), 1455–1465.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Lee, K., et al. (2014). Attenuation of donor-reactive T cells allows effective control of allograft rejection using regulatory T cell therapy. American Journal of Transplantation, 14(1), 27–38.PubMedCrossRefGoogle Scholar
  86. 86.
    Shultz, L. D., Ishikawa, F., & Greiner, D. L. (2007). Humanized mice in translational biomedical research. Nature Reviews. Immunology, 7(2), 118–130.PubMedCrossRefGoogle Scholar
  87. 87.
    Brunstein, C. G., et al. (2011). Infusion of ex vivo expanded T regulatory cells in adults transplanted with umbilical cord blood: Safety profile and detection kinetics. Blood, 117(3), 1061–1070.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Issa, F., et al. (2010). Ex vivo-expanded human regulatory T cells prevent the rejection of skin allografts in a humanized mouse model. Transplantation, 90(12), 1321–1327.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Nadig, S. N., et al. (2010). In vivo prevention of transplant arteriosclerosis by ex vivo-expanded human regulatory T cells. Nature Medicine, 16(7), 809–813.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Sagoo, P., et al. (2012). Alloantigen-specific regulatory T cells prevent experimental chronic graft-versus-host disease by simultaneous control of allo- and autoreactivity. European Journal of Immunology, 42(12), 3322–3333.PubMedCrossRefGoogle Scholar
  91. 91.
    Putnam, A. L., et al. (2013). Clinical grade manufacturing of human alloantigen-reactive regulatory T cells for use in transplantation. American Journal of Transplantation, 13(11), 3010–3020.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Spadafora-Ferreira, M., et al. (2007). CD4+CD25+Foxp3+ indirect alloreactive T cells from renal transplant patients suppress both the direct and indirect pathways of allorecognition. Scandinavian Journal of Immunology, 66(2–3), 352–361.PubMedCrossRefGoogle Scholar
  93. 93.
    Yamada, A., et al. (2001). Recipient MHC class II expression is required to achieve long-term survival of murine cardiac allografts after costimulatory blockade. Journal of Immunology, 167(10), 5522–5526.CrossRefGoogle Scholar
  94. 94.
    Taylor, P. A., Lees, C. J., & Blazar, B. R. (2002). The infusion of ex vivo activated and expanded CD4(+)CD25(+) immune regulatory cells inhibits graft-versus-host disease lethality. Blood, 99(10), 3493–3499.PubMedCrossRefGoogle Scholar
  95. 95.
    Hoffmann, P., et al. (2006). Only the CD45RA+ subpopulation of CD4+CD25high T cells gives rise to homogeneous regulatory T-cell lines upon in vitro expansion. Blood, 108(13), 4260–4267.PubMedCrossRefGoogle Scholar
  96. 96.
    Tang, Q., & Bluestone, J. A. (2013). Regulatory T-cell therapy in transplantation: Moving to the clinic. Cold Spring Harb Perspect Med, 3(11), 1–15.CrossRefGoogle Scholar
  97. 97.
    Veerapathran, A., et al. (2013). Human regulatory T cells against minor histocompatibility antigens: Ex vivo expansion for prevention of graft-versus-host disease. Blood, 122(13), 2251–2261.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Noyan, F., et al. (2014). Isolation of human antigen-specific regulatory T cells with high suppressive function. European Journal of Immunology, 44(9), 2592–2602.PubMedCrossRefGoogle Scholar
  99. 99.
    Canavan, J. B., et al. (2016). Developing in vitro expanded CD45RA+ regulatory T cells as an adoptive cell therapy for Crohn's disease. Gut, 65(4), 584–594.PubMedCrossRefGoogle Scholar
  100. 100.
    Scotta, C., et al. (2013). Differential effects of rapamycin and retinoic acid on expansion, stability and suppressive qualities of human CD4(+)CD25(+)FOXP3(+) T regulatory cell subpopulations. Haematologica, 98(8), 1291–1299.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Safinia, N., Vaikunthanathan, T., Fraser, H., Thirkell, S., Lowe, K., Blackmore, L., Whitehouse, G., Martinez-Llordella, M., Jassem, W., Sanchez-Fueyo, A., Lechler, R. I., & Lombardi, G. (2016). Successful expansion of functional and stable regulatory T cells for immunotherapy in liver transplantation. Oncotarget, 7(7), 7563–7577.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Afzali, B., et al. (2013). Comparison of regulatory T cells in hemodialysis patients and healthy controls: Implications for cell therapy in transplantation. Clinical Journal of the American Society of Nephrology, 8(8), 1396–1405.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Marek-Trzonkowska, N., et al. (2012). Administration of CD4+CD25highCD127- regulatory T cells preserves beta-cell function in type 1 diabetes in children. Diabetes Care, 35(9), 1817–1820.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Trzonkowski, P., et al. (2009). First-in-man clinical results of the treatment of patients with graft versus host disease with human ex vivo expanded CD4+CD25+CD127- T regulatory cells. Clinical Immunology, 133(1), 22–26.PubMedCrossRefGoogle Scholar
  105. 105.
    Di Ianni, M., et al. (2011). Tregs prevent GVHD and promote immune reconstitution in HLA-haploidentical transplantation. Blood, 117(14), 3921–3928.PubMedCrossRefGoogle Scholar
  106. 106.
    Bluestone, J. A., et al. (2015). Type 1 diabetes immunotherapy using polyclonal regulatory T cells. Science Translational Medicine, 7(315), 315ra189.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Jonuleit, H., et al. (2001). Identification and functional characterization of human CD4(+)CD25(+) T cells with regulatory properties isolated from peripheral blood. The Journal of Experimental Medicine, 193(11), 1285–1294.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Levings, M. K., Sangregorio, R., & Roncarolo, M. G. (2001). Human cd25(+)cd4(+) t regulatory cells suppress naive and memory T cell proliferation and can be expanded in vitro without loss of function. The Journal of Experimental Medicine, 193(11), 1295–1302.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Todo, S., et al. (2016). A pilot study of operational tolerance with a regulatory T cell-based cell therapy in living donor liver transplantation. Hepatology, 64(2), 632–643.PubMedCrossRefGoogle Scholar
  110. 110.
    Safinia, N., et al. (2015). Regulatory T cells: Serious contenders in the promise for immunological tolerance in transplantation. Frontiers in Immunology, 6, 438.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Ballou, L. M., & Lin, R. Z. (2008). Rapamycin and mTOR kinase inhibitors. Journal of Chemical Biology, 1(1–4), 27–36.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Procaccini, C., et al. (2010). An oscillatory switch in mTOR kinase activity sets regulatory T cell responsiveness. Immunity, 33(6), 929–941.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Hester, J., et al. (2012). Low-dose rapamycin treatment increases the ability of human regulatory T cells to inhibit transplant arteriosclerosis in vivo. American Journal of Transplantation, 12(8), 2008–2016.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Akimova, T., et al. (2012). Differing effects of rapamycin or calcineurin inhibitor on T-regulatory cells in pediatric liver and kidney transplant recipients. American Journal of Transplantation, 12(12), 3449–3461.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Zhao, T., et al. (2013). Comparison of regulatory T cells and FoxP3-positive T-cell subsets in the peripheral blood of renal transplant recipients with sirolimus versus cyclosporine: A preliminary study. Transplantation Proceedings, 45(1), 148–152.PubMedCrossRefGoogle Scholar
  116. 116.
    Rossetti, M., et al. (2015). Ex vivo-expanded but not in vitro-induced human regulatory T cells are candidates for cell therapy in autoimmune diseases thanks to stable demethylation of the FOXP3 regulatory T cell-specific demethylated region. Journal of Immunology, 194(1), 113–124.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Liao, W., Lin, J. X., & Leonard, W. J. (2013). Interleukin-2 at the crossroads of effector responses, tolerance, and immunotherapy. Immunity, 38(1), 13–25.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Zorn, E., et al. (2006). IL-2 regulates FOXP3 expression in human CD4+CD25+ regulatory T cells through a STAT-dependent mechanism and induces the expansion of these cells in vivo. Blood, 108(5), 1571–1579.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Koreth, J., et al. (2016). Efficacy, durability, and response predictors of low-dose interleukin-2 therapy for chronic graft vs. host disease. Blood, 128(1), 130–137.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Grinberg-Bleyer, Y., et al. (2010). IL-2 reverses established type 1 diabetes in NOD mice by a local effect on pancreatic regulatory T cells. The Journal of Experimental Medicine, 207(9), 1871–1878.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Pilon, C. B., et al. (2014). Administration of low doses of IL-2 combined to rapamycin promotes allogeneic skin graft survival in mice. American Journal of Transplantation, 14(12), 2874–2882.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Gavin M. Mason
    • 1
  • Jayna Patel
    • 1
  • Leena Halim
    • 1
  • Niloufar Safinia
    • 1
  • Giovanna Lombardi
    • 1
    Email author
  1. 1.MRC Centre for Transplantation, Division of Transplantation Immunology and Mucosal Biology, King’s College London, Guy’s HospitalLondonUK

Personalised recommendations