3D Bioprinting in Transplantation

  • Armando Salim Munoz-Abraham
  • Christopher Ibarra
  • Raghav Agarwal
  • John Geibel
  • David C. MulliganEmail author


The continued rise in patients suffering from organ failure has raised the need for additional sources for replacement organs to improve the quality of life for these patients. Organ transplantation is the standard of care for end-stage organ disease, and as such, there has been an ever-increasing need worldwide to find suitable grafts for those patients.

In the last decade, the field of biomedical engineering has made important technological advances in tissue bioengineering through the use of three-dimensional bioprinting. These innovative advances have contributed to developing biocompatible materials and supporting scaffolds that allow the production of functional tissues and printed organ models. 3D printing in medicine could eventually allow the application of printed tissues and organs to replace damaged or irreparable grafts from trauma or disease. Using these new and emerging additive-manufacturing technologies, it is hoped to be able to implant printed synthetics for end-stage organ disease (ESOD) and help with the shortage of viable organs for transplantation.

Multiple bioprinter configurations for tissue printing along with printing techniques have emerged to revolutionize the creation of 3D biostructures. Current advances of tissue bioengineering strive to allow for self-assembly of cells and tissues to become a reality, which would augment the possibility of generating new graft models. Around the world, scientists have developed vascular grafts, liver, kidney, and heart models that are in various stages of development and in some cases have been implanted in animal models. Many years of work are still to come in order for these basic models to be useful for human implantation.

Ultimately, the goal of developing bioprinted tissues and organs is to overcome the shortage of available grafts. Furthermore, these replacement tissues could be made of cells from the donor, thereby reducing the risk of rejection and the levels of immunosuppressive agents being used.


Tissue engineering Organ engineering Regenerative medicine Tissue-engineered vascular grafts Transplantation 


  1. 1.
    Alkhouri, N., & Zein, N. N. (2016). Three-dimensional printing and pediatric liver disease. Current Opinion in Pediatrics, 28, 626–630.CrossRefPubMedGoogle Scholar
  2. 2.
    Atala, A., Bauer, S. B., Soker, S., Yoo, J. J., & Retik, A. B. (2006). Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet, 367, 1241–1246.CrossRefGoogle Scholar
  3. 3.
    Bertassoni, L. E., Cardoso, J. C., Manoharan, V., Cristino, A. L., Bhise, N. S., Araujo, W. A., Zorlutuna, P., Vrana, N. E., Ghaemmaghami, A. M., Dokmeci, M. R., & Khademhosseini, A. (2014). Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels. Biofabrication, 6, 024105.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Catros, S., Fricain, J. C., Guillotin, B., Pippenger, B., Bareille, R., Remy, M., Lebraud, E., Desbat, B., Amedee, J., & Guillemot, F. (2011). Laser-assisted bioprinting for creating on-demand patterns of human osteoprogenitor cells and nano-hydroxyapatite. Biofabrication, 3, 025001.CrossRefPubMedGoogle Scholar
  5. 5.
    Chang, C. C., Boland, E. D., Williams, S. K., & Hoying, J. B. (2011). Direct-write bioprinting three-dimensional biohybrid systems for future regenerative therapies. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 98, 160–170.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Chia, H. N., & Wu, B. M. (2015). Recent advances in 3D printing of biomaterials. Journal of Biological Engineering, 9, 4.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Gui, L., Boyle, M. J., Kamin, Y. M., Huang, A. H., Starcher, B. C., Miller, C. A., Vishnevetsky, M. J., & Niklason, L. E. (2014). Construction of tissue-engineered small-diameter vascular grafts in fibrin scaffolds in 30 days. Tissue Engineering. Part A, 20, 1499–1507.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Gui, L., & Niklason, L. E. (2014). Vascular tissue engineering: Building Perfusable vasculature for implantation. Current Opinion in Chemical Engineering, 3, 68–74.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Guillotin, B., Souquet, A., CATROS, S., Duocastella, M., Pippenger, B., Bellance, S., Bareille, R., Remy, M., Bordenave, L., Amedee, J., & Guillemot, F. (2010). Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials, 31, 7250–7256.CrossRefGoogle Scholar
  10. 10.
    Hasan, A., PAUL, A., Vrana, N. E., Zhao, X., Memic, A., Hwang, Y. S., Dokmeci, M. R., & Khademhosseini, A. (2014). Microfluidic techniques for development of 3D vascularized tissue. Biomaterials, 35, 7308–7325.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Homan, K. A., Kolesky, D. B., Skylar-Scott, M. A., Herrmann, J., Obuobi, H., Moisan, A., & Lewis, J. A. (2016). Bioprinting of 3D convoluted renal proximal tubules on Perfusable chips. Scientific Reports, 6, 34845.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Jakab, K., Norotte, C., Marga, F., Murphy, K., Vunjak-Novakovic, G., & Forgacs, G. (2010). Tissue engineering by self-assembly and bio-printing of living cells. Biofabrication, 2, 022001.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    King, S., Creasey, O., Presnell, S., & Nguyen, D. (2015). Design and characterization of a multicellular, three-dimensional (3D) tissue model of the human kidney proximal tubule. The FASEB Journal, 29(1 Supplement), LB426.Google Scholar
  14. 14.
    Klammert, U., Vorndran, E., Reuther, T., Muller, F. A., Zorn, K., & Gbureck, U. (2010). Low temperature fabrication of magnesium phosphate cement scaffolds by 3D powder printing. Journal of Materials Science. Materials in Medicine, 21, 2947–2953.CrossRefPubMedGoogle Scholar
  15. 15.
    Kolesky, D. B., Truby, R. L., Gladman, A. S., Busbee, T. A., Homan, K. A., & Lewis, J. A. (2014). 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Advanced Materials, 26, 3124–3130.CrossRefPubMedGoogle Scholar
  16. 16.
    Mannoor, M. S., Jiang, Z. W., James, T., Kong, Y. L., Malatesta, K. A., Soboyejo, W. O., Verma, N., Gracias, D. H., & Mcalpine, M. C. (2013). 3D printed bionic ears. Nano Letters, 13, 2634–2639.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    McCallen, J. D., Schaefer, A., Lee, P., Hing, L., & Lai, S. K. (2017). Stereolithography-Based 3D Printed “Pillar Plates” that Minimizes Fluid Transfers During Enzyme Linked Immunosorbent Assays. Annals of biomedical engineering, 45(4), 982–989.CrossRefPubMedGoogle Scholar
  18. 18.
    Miller, J. S., Stevens, K. R., Yang, M. T., Baker, B. M., Nguyen, D. H., Cohen, D. M., Toro, E., Chen, A. A., Galie, P. A., Yu, X., Chaturvedi, R., Bhatia, S. N., & Chen, C. S. (2012). Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nature Materials, 11, 768–774.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Mironov, V. (2003). Printing technology to produce living tissue. Expert Opinion on Biological Therapy, 3, 701–704.CrossRefPubMedGoogle Scholar
  20. 20.
    Mironov, V., Visconti, R. P., Kasyanov, V., Forgacs, G., Drake, C. J., & Markwald, R. R. (2009). Organ printing: Tissue spheroids as building blocks. Biomaterials, 30, 2164–2174.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Munoz-Abraham, A. S., Rodriguez-Davalos, M. I., Bertacco, A., Wengerter, B., Geibel, J. P., & Mulligan, D. C. (2016). 3D printing of organs for transplantation: Where are we and where are we heading? Current Transplantation Reports, 3, 93–99.CrossRefGoogle Scholar
  22. 22.
    Murphy, S. V., & Atala, A. (2014). 3D bioprinting of tissues and organs. Nature Biotechnology, 32, 773–785.CrossRefPubMedGoogle Scholar
  23. 23.
    Norotte, C., Marga, F. S., Niklason, L. E., & Forgacs, G. (2009). Scaffold-free vascular tissue engineering using bioprinting. Biomaterials, 30, 5910–5917.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Organovo. 2015. The bioprinting process.Google Scholar
  25. 25.
    Rengier, F., Mehndiratta, A., Von Tengg-Kobligk, H., Zechmann, C. M., Unterhinninghofen, R., Kauczor, H. U., & Giesel, F. L. (2010). 3D printing based on imaging data: Review of medical applications. International Journal of Computer Assisted Radiology and Surgery, 5, 335–341.CrossRefPubMedGoogle Scholar
  26. 26.
    Robbins, J. B., Gorgen, V., Min, P., Shepherd, B. R., & Presnell, S. C. (2013). A novel in vitro three-dimensional bioprinted liver tissue system for drug development. FASEB Journal, 27.Google Scholar
  27. 27.
    Segev, D. L., Muzaale, A. D., Caffo, B. S., Mehta, S. H., Singer, A. L., Taranto, S. E., Mcbride, M. A., & Montgomery, R. A. (2010). Perioperative mortality and long-term survival following live kidney donation. JAMA, 303, 959–966.CrossRefPubMedGoogle Scholar
  28. 28.
    Song, J. J., Guyette, J. P., Gilpin, S. E., Gonzalez, G., Vacanti, J. P., & Ott, H. C. (2013). Regeneration and experimental orthotopic transplantation of a bioengineered kidney. Nature Medicine, 19, 646–651.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Soto-Gutierrez, A., Wertheim, J. A., Ott, H. C., & Gilbert, T. W. (2012). Perspectives on whole-organ assembly: Moving toward transplantation on demand. The Journal of Clinical Investigation, 122, 3817–3823.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Stanton, M. M., Samitier, J., & Sanchez, S. (2015). Bioprinting of 3D hydrogels. Lab on a Chip, 15, 3111–3115.CrossRefPubMedGoogle Scholar
  31. 31.
    Sun, W., Starly, B., Darling, A., & Gomez, C. (2004). Computer-aided tissue engineering: Application to biomimetic modelling and design of tissue scaffolds. Biotechnology and Applied Biochemistry, 39, 49–58.CrossRefPubMedGoogle Scholar
  32. 32.
    Utrecht, U. 3D-Printed Skull Impanted In Patient. 2014 [cited 2015 2015]; Available from: Scholar
  33. 33.
    Wengerter, B. C., Emre, G., Park, J. Y., & Geibel, J. (2016). Three-dimensional printing in the intestine. Clinical Gastroenterology and Hepatology, 14, 1081–1085.CrossRefPubMedGoogle Scholar
  34. 34.
    Yagi, H., Fukumitsu, K., Fukuda, K., Kitago, M., Shinoda, M., Obara, H., Itano, O., Kawachi, S., Tanabe, M., Coudriet, G. M., Piganelli, J. D., Gilbert, T. W., Soto-Gutierrez, A., & Kitagawa, Y. (2013). Human-scale whole-organ bioengineering for liver transplantation: A regenerative medicine approach. Cell Transplantation, 22, 231–242.CrossRefPubMedGoogle Scholar
  35. 35.
    Zhang, X. Y., & Zhang, Y. D. (2015). Tissue engineering applications of three-dimensional Bioprinting. Cell Biochemistry and Biophysics, 72, 777–782.CrossRefPubMedGoogle Scholar
  36. 36.
    Zhang, Y. S., Arneri, A., Bersini, S., Shin, S. R., Zhu, K., Goli-Malekabadi, Z., Aleman, J., Colosi, C., Busignani, F., Dell'erba, V., Bishop, C., Shupe, T., Demarchi, D., Moretti, M., Rasponi, M., Dokmeci, M. R., Atala, A., & Khademhosseini, A. (2016). Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials, 110, 45–59.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Armando Salim Munoz-Abraham
    • 1
  • Christopher Ibarra
    • 2
  • Raghav Agarwal
    • 3
  • John Geibel
    • 1
  • David C. Mulligan
    • 1
    Email author
  1. 1.Department of SurgeryYale School of MedicineNew HavenUSA
  2. 2.Section of Transplantation and Immunology, Department of SurgeryYale School of MedicineNew HavenUSA
  3. 3.Undergraduate Student Volunteer – Class of 2018Arizona State UniversityTempeUSA

Personalised recommendations