Advertisement

Cancer Treatment-Related Cardiotoxicity: Role of Cardiovascular Magnetic Resonance Imaging

  • Felipe Kazmirczak
  • Prajwal Reddy
  • Anne H. Blaes
  • Chetan Shenoy
Chapter

Abstract

Cardiomyopathy is one of the most common cardiotoxic manifestations from cancer treatment. Clinically, identifying the presence or absence of cardiomyopathy has significant implications on the management of cancer patients. Decisions regarding the continuation, temporary stopping or permanent stopping of potentially life-saving cancer treatment are made based on the presence or absence of, the etiology of (i.e., whether it is a consequence of the cancer treatment or unrelated), and the severity of cardiomyopathy. Thus, it is critically important to use an imaging test that can reliably and accurately provide these data. Cardiovascular magnetic resonance (CMR) is ideally suited for this role—it provides the ability to assess ventricular function, morphology, valvular function, perfusion and tissue characterization all in one setting.

Keywords

Cardiac magnetic resonance Cancer treatment related cardiotoxicity Cardiomyopathy 

References

  1. 1.
    Bellenger NG, Burgess MI, Ray SG, et al. Comparison of left ventricular ejection fraction and volumes in heart failure by echocardiography, radionuclide ventriculography and cardiovascular magnetic resonance; are they interchangeable? Eur Heart J. 2000;21:1387–96.CrossRefPubMedGoogle Scholar
  2. 2.
    Farber NJ, Reddy ST, Doyle M, et al. Ex vivo cardiovascular magnetic resonance measurements of right and left ventricular mass compared with direct mass measurement in excised hearts after transplantation: a first human SSFP comparison. J Cardiovasc Magn Reson. 2014;16:74.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Armstrong GT, Plana JC, Zhang N, et al. Screening adult survivors of childhood cancer for cardiomyopathy: comparison of echocardiography and cardiac magnetic resonance imaging. J Clin Oncol. 2012;30:2876–84.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Neilan TG, Coelho-Filho OR, Pena-Herrera D, et al. Left ventricular mass in patients with a cardiomyopathy after treatment with anthracyclines. Am J Cardiol. 2012;110:1679–86.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Huang H, Nijjar PS, Misialek JR, et al. Accuracy of left ventricular ejection fraction by contemporary multiple gated acquisition scanning in patients with cancer: comparison with cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2017;19:34.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Pennell DJ. Cardiovascular magnetic resonance. Circulation. 2010;121:692–705.CrossRefPubMedGoogle Scholar
  7. 7.
    Ylanen K, Poutanen T, Savikurki-Heikkila P, Rinta-Kiikka I, Eerola A, Vettenranta K. Cardiac magnetic resonance imaging in the evaluation of the late effects of anthracyclines among long-term survivors of childhood cancer. J Am Coll Cardiol. 2013;61:1539–47.CrossRefPubMedGoogle Scholar
  8. 8.
    Grover S, Leong DP, Chakrabarty A, et al. Left and right ventricular effects of anthracycline and trastuzumab chemotherapy: a prospective study using novel cardiac imaging and biochemical markers. Int J Cardiol. 2013;168:5465–7.CrossRefPubMedGoogle Scholar
  9. 9.
    Calleja A, Poulin F, Khorolsky C, et al. Right ventricular dysfunction in patients experiencing cardiotoxicity during breast cancer therapy. J Oncol. 2015;2015:609194.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Christiansen JR, Massey R, Dalen H, et al. Right ventricular function in long-term adult survivors of childhood lymphoma and acute lymphoblastic leukaemia. Eur Heart J Cardiovasc Imaging. 2016;17:735–41.CrossRefPubMedGoogle Scholar
  11. 11.
    Boczar KE, Aseyev O, Sulpher J, et al. Right heart function deteriorates in breast cancer patients undergoing anthracycline-based chemotherapy. Echo Res Pract. 2016;3:79–84.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Murbraech K, Holte E, Broch K, et al. Impaired right ventricular function in long-term lymphoma survivors. J Am Soc Echocardiogr. 2016;29:528–36.CrossRefPubMedGoogle Scholar
  13. 13.
    Abdar Esfahani M, Mokarian F, Karimipanah M. Alterations in the echocardiographic variables of the right ventricle in asymptomatic patients with breast cancer during anthracycline chemotherapy. Postgrad Med J. 2017;93:271–4.CrossRefPubMedGoogle Scholar
  14. 14.
    Ostenfeld E, Flachskampf FA. Assessment of right ventricular volumes and ejection fraction by echocardiography: from geometric approximations to realistic shapes. Echo Res Pract. 2015;2:R1–11.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Senthilkumar A, Majmudar MD, Shenoy C, Kim HW, Kim RJ. Identifying the etiology: a systematic approach using delayed-enhancement cardiovascular magnetic resonance. Heart Fail Clin. 2009;5:349–67, vi.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Felker GM, Thompson RE, Hare JM, et al. Underlying causes and long-term survival in patients with initially unexplained cardiomyopathy. N Engl J Med. 2000;342:1077–84.CrossRefPubMedGoogle Scholar
  17. 17.
    Zoghbi WA, Adams D, Bonow RO, et al. Recommendations for noninvasive evaluation of native valvular regurgitation: a report from the American Society of Echocardiography Developed in Collaboration with the Society for Cardiovascular Magnetic Resonance. J Am Soc Echocardiogr. 2017;30(4):303–71.CrossRefPubMedGoogle Scholar
  18. 18.
    Yeh ET, Bickford CL. Cardiovascular complications of cancer therapy: incidence, pathogenesis, diagnosis, and management. J Am Coll Cardiol. 2009;53:2231–47.CrossRefPubMedGoogle Scholar
  19. 19.
    Johnson DB, Balko JM, Compton ML, et al. Fulminant myocarditis with combination immune checkpoint blockade. N Engl J Med. 2016;375:1749–55.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Weinsaft JW, Kim HW, Shah DJ, et al. Detection of left ventricular thrombus by delayed-enhancement cardiovascular magnetic resonance prevalence and markers in patients with systolic dysfunction. J Am Coll Cardiol. 2008;52:148–57.CrossRefPubMedGoogle Scholar
  21. 21.
    Kitkungvan D, Nabi F, Ghosn MG, et al. Detection of LA and LAA thrombus by CMR in patients referred for pulmonary vein isolation. JACC Cardiovasc Imaging. 2016;9:809–18.CrossRefPubMedGoogle Scholar
  22. 22.
    Thavendiranathan P, Wintersperger BJ, Flamm SD, Marwick TH. Cardiac MRI in the assessment of cardiac injury and toxicity from cancer chemotherapy: a systematic review. Circ Cardiovasc Imaging. 2013;6:1080–91.CrossRefPubMedGoogle Scholar
  23. 23.
    Jordan JH, Vasu S, Morgan TM, et al. Anthracycline-associated T1 mapping characteristics are elevated independent of the presence of cardiovascular comorbidities in cancer survivors. Circ Cardiovasc Imaging. 2016;9:e004325.Google Scholar
  24. 24.
    Jordan JH, D’Agostino RB Jr, Hamilton CA, et al. Longitudinal assessment of concurrent changes in left ventricular ejection fraction and left ventricular myocardial tissue characteristics after administration of cardiotoxic chemotherapies using T1-weighted and T2-weighted cardiovascular magnetic resonance. Circ Cardiovasc Imaging. 2014;7:872–9.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Melendez GC, Hundley WG. Is myocardial fibrosis a new Frontier for discovery in cardiotoxicity related to the administration of anthracyclines? Circ Cardiovasc Imaging. 2016;9:e005797.CrossRefPubMedGoogle Scholar
  26. 26.
    Drafts BC, Twomley KM, D’Agostino R Jr, et al. Low to moderate dose anthracycline-based chemotherapy is associated with early noninvasive imaging evidence of subclinical cardiovascular disease. JACC Cardiovasc Imaging. 2013;6:877–85.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Chaosuwannakit N, D’Agostino R Jr, Hamilton CA, et al. Aortic stiffness increases upon receipt of anthracycline chemotherapy. J Clin Oncol. 2010;28:166–72.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Felipe Kazmirczak
    • 1
  • Prajwal Reddy
    • 2
  • Anne H. Blaes
    • 3
  • Chetan Shenoy
    • 1
  1. 1.Cardiovascular Division, Department of MedicineUniversity of Minnesota Medical CenterMinneapolisUSA
  2. 2.Department of MedicineUniversity of Minnesota Medical CenterMinneapolisUSA
  3. 3.Division of Hematology, Oncology and Transplantation, Department of MedicineUniversity of Minnesota Medical CenterMinneapolisUSA

Personalised recommendations