Nutritional Composition of Pot-Pollen from Four Species of Stingless Bees (Meliponini) in Southeast Asia

  • Bajaree ChuttongEmail author
  • Rewat Phongphisutthinant
  • Korawan Sringarm
  • Michael Burgett
  • Ortrud Monika Barth


Pot-pollen from four species of indigenous Thai stingless bees (Lepidotrigona flavibasis, Lepidotrigona terminata, Tetragonula laeviceps species complex, and Tetragonula testaceitarsis) was examined for nutritional composition including macronutrients, mineral content, fatty acids, and amino acids. The results for macronutrients are similar to previous pollen analyses done on pollen stored by the western honey bee Apis mellifera, a species which has dominated research in nutritional studies of pollen. A caveat is that total protein of pot-pollen is somewhat lower than that reported for A. mellifera. Our results for mineral content exhibit interspecific similarities and are within the parameters of known pollen mineral content. For fatty acid and amino acid analyses, we utilized only the stingless bee species T. laeviceps species complex. Total unsaturated fatty acids were more prevalent (3.66 ± 0.18 g/100 g) than total saturated (2.30 ± 0.59 g/100 g). Twenty amino acids were identified, of which 9 are essential and 11 classified as nonessential. Lysine was the most prevalent individual amino acid. The botanical sources were heterofloral and dominated by four pollen types of the genera Cocos, Acacia, Trema, and Tapirira.



This research was supported by Chiang Mai University Short-Term Research in Overseas. We thank Dr. Hans Banziger, Chiang Mai University for his precise stingless bee identification. We thank all the stingless bee beekeepers who assisted us in the collection of pot-pollen samples. We are grateful to the technical assistance of MSc. Alex da Silva de Freitas in preparing the pollen slides with financial support of the Brazilian National Council of Research “Conselho Nacional de Desenvolvimento Científico e Tecnológico.


  1. Almeida-Muradian LB, Pamplona LC, Coimbra S, Barth OM. 2005. Chemical composition and botanical evaluation of dried bee pollen pellets. Journal of Food Composition and Analysis 18: 105-111.CrossRefGoogle Scholar
  2. AOAC International. 2005. Official methods of analysis of AOAC International. AOAC International; Virginia, USA. 771pp.Google Scholar
  3. Ayala R, Gonzalez VH, Engel MS. 2013. Mexican stingless bees (Hymenoptera: Apidae): Diversity, distribution, and indigenous knowledge. pp. 135-152. In: Vit P, Pedro SRM, Roubik D, eds. Pot-Honey: A legacy of stingless bees. Springer. New York, USA. 654 pp.CrossRefGoogle Scholar
  4. Barth OM, Freitas AS, Oliveira S, Silva RA, Maester FM, Andrella RR, Cardozo G M. 2010. Evaluation of the botanical origin of commercial dry bee pollen load batches using pollen analysis: a proposal for technical standardization. Anais da Academia Brasileira de Ciências 82: 893-902.CrossRefPubMedGoogle Scholar
  5. Bogdanov S. 2004. Quality and standards of pollen and beeswax. Apiacta 38: 334-341.Google Scholar
  6. Burgett DM, Sukumalanand P, Vorwohl G. 2005. Pollen species resources for Xylocopa (Nyctomelitta) tranquebarica (F.) – a night-flying carpenter bee (Hymenoptera: Apidae) of Southeast Asia. Science Asia 31: 61-64.CrossRefGoogle Scholar
  7. Camargo JMF, Garcia MVB, Junior ERQ, Castrillon A. 1992. Notas previas sobre a bionomia de Ptilotrigona lurida (Hymenoptera, Apidae, Meliponinae): associação de leveduras em pólenes tocado. Boletim do Museu Paraense Emílio Goeldi 8: 391–395.Google Scholar
  8. Campos MG, Bogdanov S, de Almeida-Muradian LB, Szczesna T, Mancebo Y, Frigerio C, Ferreira F. 2008. Pollen composition and standardisation of analytical methods. Journal of Apicultural Research 47: 154-161.CrossRefGoogle Scholar
  9. Campos M, Markham KR, Mitchell KA, da Cunha AP. 1997. An approach to the characterization of bee pollens via their flavonoid/phenolic profiles. Phytochemical Analysis 8: 181–185.CrossRefGoogle Scholar
  10. Chuttong B, Chanbang Y, Burgett M. 2014. Meliponiculture: Stingless Bee Beekeeping in Thailand. Bee World 91(2): 41–45.CrossRefGoogle Scholar
  11. Compendium of methods for food analysis (in Thai). 2003. Department of Medical Sciences (DMSc), National Bureau of Agricultural Commodity and Food Standards (ACFS). Bangkok.Google Scholar
  12. DOAE. 2014. Department of Agricultural Extension. Thai Ministry of Agriculture and Cooperatives. Region 3. Chanthaburi. Personal communication.Google Scholar
  13. Eltz T, Brühl CA, Van der Kaars S, Chey VK, Linsenmair KE. 2001. Pollen foraging and resource partitioning of stingless bees in relation to flowering dynamics in a Southeast Asian tropical rainforest. Insectes Sociaux 48: 273-279.CrossRefGoogle Scholar
  14. Hardy PM. 1985. The protein amino acids. pp. 7-24. In: Barrett GC, ed. Chemistry and Biochemistry of the Amino Acids. Chapman and Hall Ltd, London, UK. 684 pp.Google Scholar
  15. Herbert EW, Shimanuki H. 1978. Chemical composition and nutritive value of bee-collected and bee-stored pollen. Apidologie 9: 33-40.CrossRefGoogle Scholar
  16. Human H, Nicolson SW. 2006. Nutritional content of fresh, bee-collected and stored pollen of Aloe greatheadii var. davyana (Asphodelaceae). Phytochemistry 67: 1486-1492.CrossRefPubMedGoogle Scholar
  17. Krell R. 1996. Value-added products from beekeeping (No. 124). Food and Agriculture Organization of the United Nations. Rome, Italy, 409 pp.Google Scholar
  18. Loper GM, Cohen AC. 1987. Amino acid content of dandelion pollen, a honey bee (Hymenoptera: Apidae) nutritional evaluation. Journal of Economic Entomology 80: 14-17.CrossRefGoogle Scholar
  19. Loper GM, Standifer LN, Thompson MJ, Gilliam M. 1980. Biochemistry and microbiology of bee-collected almond (Prunus dulcis) pollen and bee bread. I. Fatty acids, sterols, vitamins and minerals. Apidologie 11: 63–73.CrossRefGoogle Scholar
  20. Mann J, Truswell S. 2012. Essentials of human nutrition. Oxford University Press; Oxford, UK. 683 pp.Google Scholar
  21. Manning R. 2001. Fatty acids in pollen: a review of their importance for honey bees. Bee World 82: 60-75.CrossRefGoogle Scholar
  22. Manning R, Harvey M. 2002. Fatty acids in honeybee-collected pollens from six endemic Western Australian eucalypts and the possible significance to the Western Australian beekeeping industry. Animal Production Science 42: 217-223.CrossRefGoogle Scholar
  23. Menezes C, Vollet-Neto A, Contrera FAFL, Venturieri GC, Imperatriz-Fonseca VL. 2013. The role of useful microorganisms to stingless bees and stingless beekeeping. pp. 153-171. In: Vit P, Pedro SRM, Roubik D, eds. Pot-Honey: A legacy of stingless bees. Springer. New York, USA. 654 pp.CrossRefGoogle Scholar
  24. Michener CD. 1974. The social behavior of the bees: a comparative study. Harvard University Press: Cambridge, Massachusetts, USA. 418 pp.Google Scholar
  25. Michener CD. 2013. The Meliponini. pp. 3-17. In: Vit P, Pedro SRM, Roubik D, eds. Pot-Honey: A legacy of stingless bees. Springer. New York, USA. 654 pp.CrossRefGoogle Scholar
  26. Morgano MA, Martins MCT, Rabonato LC, Milani RF, Yotsuyanagi K, Rodriguez-Amaya DB. 2012. A comprehensive investigation of the mineral composition of Brazilian bee pollen: geographic and seasonal variations and contribution to human diet. Journal of the Brazilian Chemical Society 23: 727-736.Google Scholar
  27. Obiols CLY, Vásquez M. 2013. Stingless Bees of Guatemala. pp. 99-111. In: Vit P, Pedro SRM, Roubik D, eds. Pot-Honey: A legacy of stingless bees. Springer. New York, USA. 654 pp.CrossRefGoogle Scholar
  28. Omar WAW, Azhar NA, Fadzilah NH, Kamal NNSNM. 2016. Bee pollen extract of Malaysian stingless bee enhances the effect of cisplatin on breast cancer cell lines. Asian Pacific Journal of Tropical Biomedicine 6: 265-269.CrossRefGoogle Scholar
  29. Ramalho M, Kleinert-Giovannini A, Imperatriz-Fonseca VL. 1989. Utilization of floral resources by species of Melipona (Apidae, Meliponinae): Floral preferences. Apidologie 20: 185-195.CrossRefGoogle Scholar
  30. Ramalho M, Kleinert-Giovannini A, Imperatriz-Fonseca VL. 1990. Important bee plants for stingless bees (Melipona and Trigonini) and Africanized honeybees (Apis mellifera) in neotropical habitats: a review. Apidologie 21: 469-488.CrossRefGoogle Scholar
  31. Rasmussen C. 2008. Catalog of the Indo-Malayan/Australasian stingless bees (Hymenoptera: Apidae: Meliponini). Zoo Taxa, New Zealand. 80 pp.Google Scholar
  32. Robert SG, Maurice ES. 1980. Modern Nutrition in Health and Disease (6th ed.). pp. 134–138. Lea and Febinger; Philadelphia, USA. 80 pp.Google Scholar
  33. Roubik DW, Moreno, PJE. 2013. How to be a bee-botanist using pollen spectra. pp. 295-314. In: Vit P, Pedro SRM, Roubik D, eds. Pot-Honey: A legacy of stingless bees. Springer. New York, USA. 654 pp.Google Scholar
  34. Serra-Bonvehi SJ, Escolà Jordà R. 1997. Nutrient composition and microbiological quality of honeybee-collected pollen in Spain. Journal of Agricultural and Food Chemistry 45: 725-732.CrossRefGoogle Scholar
  35. Silva GR, da Natividade TB, Camara CA, da Silva EMS, dos Santos FDAR, Silva TMS. 2014. Identification of sugar, amino acids and minerals from the pollen of Jandaíra stingless bees (Melipona subnitida). Food and Nutrition Sciences 5: 1015.Google Scholar
  36. Silva TMS, Camara CA, da Silva Lins AC, Barbosa-Filho JM, da Silva EMS, Freitas BM, dos Santos FDAR. 2006. Chemical composition and free radical scavenging activity of pollen loads from stingless bee Melipona subnitida Ducke. Journal of Food Composition and Analysis 19: 507-511.CrossRefGoogle Scholar
  37. Silva T, Camara CA, Lins A, Agra MDF, Silva E, Reis IT, Freitas BM. 2009. Chemical composition, botanical evaluation and screening of radical scavenging activity of collected pollen by the stingless bees Melipona rufiventris (Uruçu-amarela). Anais da Academia Brasileira de Ciências 81: 173-178.CrossRefPubMedGoogle Scholar
  38. Stanley, R. G., Linskens, H. F. 1974. Pollen: biology, chemistry, management. Springer-Verlag: Berlin. 310 pp.Google Scholar
  39. Szczesna T. 2006. Protein content and amino acid composition of bee-collected pollen from selected botanical origins. Journal of Apicultural Science 50: 81-90.Google Scholar
  40. Vit P, Medina M, Eunice Enríquez M. 2004. Quality standards for medicinal uses of Meliponinae honey in Guatemala, Mexico and Venezuela. Bee World 85: 2-5.CrossRefGoogle Scholar
  41. Vit P, Santiago B, Silvia P, Ruiz J, Maza F, Pena-Vera M, Perez-Perez E. 2016. Chemical and bioactive characterization of pot-pollen produced by Melipona and Scaptotrigona stingless bees from Paria Grande, Amazonas State, Venezuela. Emirates Journal of Food and Agriculture 28: 78-84.CrossRefGoogle Scholar
  42. Wang MS, Fan HF, Xu HJ. 1993. Effects of bee pollen on blood and hemopoietic system in mice and rats. Chinese Traditional Herbs and Drugs 588: 601.Google Scholar
  43. Weiner CN, Hilpert A, Werner M, Linsenmair KE, Blüthgen N. 2010. Pollen amino acids and flower specialization in solitary bees. Apidologie 41: 476-487.CrossRefGoogle Scholar
  44. World Health Organization/Food and Agriculture Organization/United Nations University (2007) Protein and Amino Acid Requirements in Human Nutrition Report of a Joint WHO/FAO/UNU Expert Consultation. WHO Technical Report Series no. 935. World Health Organization; Geneva, Switzerland. 265 pp.Google Scholar
  45. Yang K, Wu D, Ye X, Liu D, Chen J, Sun P. 2013. Characterization of chemical composition of bee pollen in China. Journal of Agricultural and Food Chemistry 61: 708-718.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Bajaree Chuttong
    • 1
    Email author
  • Rewat Phongphisutthinant
    • 1
  • Korawan Sringarm
    • 2
  • Michael Burgett
    • 3
  • Ortrud Monika Barth
    • 4
  1. 1.Science and Technology Research Institute, Chiang Mai UniversityChiang MaiThailand
  2. 2.Department of Animal and Aquatic Science, Faculty of AgricultureChiang Mai UniversityChiang MaiThailand
  3. 3.Department of HorticultureOregon State UniversityCorvallisUSA
  4. 4.Instituto Oswaldo CruzFiocruzBrazil

Personalised recommendations