Are Stingless Bees a Broadly Polylectic Group? An Empirical Study of the Adjustments Required for an Improved Assessment of Pollen Diet in Bees

  • Favio Gerardo VosslerEmail author


This research describes simple calculations for pollen diet studies to improve the understanding of bee natural history. The stingless bees (tribe Meliponini) have been classified as broadly polylectic as they utilize more than 10% of the pollen host species of the entire melittophilous flora at a site or more than 25% of the available plant families. However, when considering pollen types, it was not possible to classify three bee species in this manner. For this reason, different calculation adjustments on foraged and available items were applied. For the former, two threshold values (10% and 5%), to identify abundant and discard minor and contaminant pollen resources, were used. For each threshold value, the number of pollen types and the number of pollen species ascribed to each pollen type were calculated. For the available items, spatial and temporal adjustments were estimated. When these adjustments were applied, in some cases bees were identified at higher specialization categories; broad polylectic was recorded only in six cases for Melipona orbignyi and Tetragonisca fiebrigi. As previously suggested for the other categories, contaminant and minor pollen types should also be excluded in polylectic bees. The threshold values of 10% for species and 25% for families are too high to reach broad polylecty. In addition, no direct comparisons between pollen types and pollen species could be made when working with the palynological data. Thus, simple values were proposed to assess pollen diet of generalist bees: the maximum number of foraged items per nest (contaminants not considered) and the maximum percentage value of foraged versus available items (adjusted). These belong to a wider range of values that can be recognized as degrees of polylecty, allowing for a more precise identification.



I am especially thankful to Patricia Vit for her kind invitation to participate in this book and Alicia Basilio for recommending me, Nora Brea for her help in English language, David Roubik and Nora Brea for providing suggestions and critical comments on the manuscript, and Arturo Roig-Alsina for the identification of bees. This study was supported by CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas).

Supplementary material

426030_1_En_2_MOESM1_ESM.doc (236 kb)
Table 2.2b (Tetragonisca fiebrigi) (DOC 236 kb)
426030_1_En_2_MOESM2_ESM.doc (92 kb)
Table 2.2c (Geotrigona argentina) (DOC 91 kb)
426030_1_En_2_MOESM3_ESM.doc (246 kb)
Table 2.3 Calculation adjustments on the number of total (T) and forest (F) available plant families (FAMS) and pollen types or species (SPS). Temporal adjustments (T temp and F temp) were performed for the months and seasons when nest samples were taken and for all nests together. The temporal adjustment was calculated on flowerings available during the last 4 months before nest sampling date (a total of 5 months were therefore considered for individual months and 8 months for individual seasons) (DOC 246 kb)


  1. Araújo ED, Costa M, Chaud-Netto J, Fowler HG. 2004. Body size and flight distance in stingless bees (Hymenoptera: Meliponini): inference of flight range and possible ecological implications. Brazilian Journal of Biology 64: 563–568.CrossRefGoogle Scholar
  2. Cane JH, Sipes S. 2006. Characterizing floral specialization by bees: analytical methods and a revised lexicon for oligolecty. pp 99–122. In Waser NM, Ollerton J, eds. Plant-Pollinator Interactions. From specialization to generalization. The University of Chicago Press; Chicago, USA. 488 pp.Google Scholar
  3. Cilla G, Caccavari M, Bartoloni NJ, Roig-Alsina A. 2012. The foraging preferences of two species of Melissodes Latreille (Hymenoptera, Apidae, Eucerini) in farmed sunflower in Argentina. Grana 51: 63–75.CrossRefGoogle Scholar
  4. Dalmazzo M, Vossler FG. 2015a. Assessment of the pollen diet in a wood-dwelling augochlorine bee (Halictidae) using different approaches. Apidologie 46: 478–488.CrossRefGoogle Scholar
  5. Dalmazzo M, Vossler FG. 2015b. Pollen host selection by a broadly polylectic halictid bee in relation to resource availability. Arthropod-Plant Interactions 9: 253–262.CrossRefGoogle Scholar
  6. De Klerk P, Joosten H. 2007. The difference between pollen types and plant taxa: a plea for clarity and scientific freedom. Eiszeitalter und Gegenwart / Quaternary Science Journal 56: 162–171.Google Scholar
  7. Erdtman G. 1960. The acetolysis method, a revised description. Svensk Botanisk Tidskrift 54: 561–564.Google Scholar
  8. Hrncir M, Jarau S, Zucchi R, Barth FG. 2000. Recruitment behavior in stingless bees, Melipona scutellaris and Melipona quadrifasciata. II. Possible mechanisms of communication. Apidologie 31: 93–113.CrossRefGoogle Scholar
  9. Jarau S, Hrncir M, Schmidt VM, Zucchi R, Barth FG. 2003. Effectiveness of recruitment behavior in stingless bees (Apidae, Meliponini). Insectes Sociaux 50: 365–374.CrossRefGoogle Scholar
  10. Joosten H, De Klerk P. 2002. What´s in a name? Some thougths on pollen classification, identification, and nomenclature in Quaternary palynology. Review of Palaeobotany and Palynology 122: 29–45.CrossRefGoogle Scholar
  11. Kleinert-Giovannini A, Imperatriz-Fonseca VL. 1987. Aspects of the trophic niche of Melipona marginata marginata Lepeletier (Apidae, Meliponinae). Apidologie 18: 69–100.CrossRefGoogle Scholar
  12. Larkin LL, Neff JL, Simpson BB. 2008. The evolution of a pollen diet: Host choice and diet breadth of Andrena bees (Hymenoptera: Andrenidae). Apidologie 39: 133–145.CrossRefGoogle Scholar
  13. Michener CD. 2007. The bees of the world, 2 edn. The Johns Hopkins University Press; Baltimore, USA. 953 pp.Google Scholar
  14. Michener CD. 2013. The Meliponini. pp 3–17. In Vit P, Pedro SRM, Roubik DW, eds. Pot honey: A legacy of stingless bees. Springer; New York, USA. 175 pp.Google Scholar
  15. Michez D, Patiny S, Rasmont P, Timmermann K, Vereecken NJ. 2008. Phylogeny and host-plant evolution in Melittidae s.l. (Hymenoptera: Apoidea). Apidologie 39: 146–162.CrossRefGoogle Scholar
  16. Michez D, Eardley CD, Timmermann K, Danforth BN. 2010. Unexpected polylecty in the bee genus Meganomia (Hymenoptera: Apoidea: Melittidae). Journal of the Kansas Entomological Society 83: 221–230.CrossRefGoogle Scholar
  17. Minckley RL, Cane JH, Kervin L. 2000. Origins and ecological consequences of pollen specialization among desert bees. Proceedings of the Royal Society of London B 267: 265–271.CrossRefPubMedGoogle Scholar
  18. Minckley RL, Roulston TH. 2006. Incidental mutualisms and pollen specialization among bees. pp 69–98. In Waser NM, Ollerton J, eds. Plant-Pollinator Interactions. From specialization to generalization. The University of Chicago Press; Chicago, USA. 488 pp.Google Scholar
  19. Müller A, Kuhlmann M. 2008. Pollen hosts of western palaearctic bees of the genus Colletes (Hymenoptera: Colletidae): the Asteraceae paradox. Biological Journal of the Linnean Society 95: 719–733.CrossRefGoogle Scholar
  20. Prado DE. 1993. What is the Gran Chaco vegetation in South America? I. A review. Contribution to the study of flora and vegetation of the Chaco. V. Candollea 48: 145–172.Google Scholar
  21. Ramalho M, Kleinert-Giovannini A, Imperatriz-Fonseca VL. 1989. Utilization of floral resources by species of Melipona (Apidae, Meliponinae): Floral preferences. Apidologie 20: 185–195.CrossRefGoogle Scholar
  22. Ramalho M, Kleinert-Giovannini A, Imperatriz-Fonseca VL. 1990. Important bee plants for stingless bees (Melipona and Trigona) and Africanized honeybees (Apis mellifera) in Neotropical habitats: a review. Apidologie 21: 469–488.CrossRefGoogle Scholar
  23. Ramalho M, Silva MD, Carvalho CAL. 2007. Dinâmica de uso de fontes de pólen por Melipona scutellaris Latreille (Hymenoptera: Apidae): uma análise comparativa com Apis mellifera L. (Hymenoptera: Apidae), no Domínio Tropical Atlântico. Neotropical Entomology 36: 38–45.CrossRefPubMedGoogle Scholar
  24. Robertson CH. 1925. Heterotropic bees. Ecology 6: 412–436.CrossRefGoogle Scholar
  25. Robertson CH. 1926. Revised list of oligolectic bees. Ecology 7: 378–380.CrossRefGoogle Scholar
  26. Roubik DW. 1982. Seasonality in colony food storage, brood production and adult survivorship: studies of Melipona in tropical forest (Hymenoptera: Apidae). Journal of the Kansas Entomological Society 55: 789–800.Google Scholar
  27. Roubik DW. 1989. Ecology and natural history of tropical bees. Cambridge University Press; New York, USA. 514 pp.Google Scholar
  28. Roubik DW, Aluja M. 1983. Flight ranges of Melipona and Trigona in tropical forest. Journal of the Kansas Entomological Society 56: 217–222.Google Scholar
  29. Sipes SD, Tepedino VJ. 2005. Pollen-host specificity and evolutionary patterns of host switching in a clade of specialist bees (Apoidea: Diadasia). Biological Journal of the Linnean Society 86: 487–505.CrossRefGoogle Scholar
  30. Torretta JP, Durante SP, Colombo MG, Basilio AM. 2012. Nesting biology of the leafcutting bee Megachile (Pseudocentron) gomphrenoides (Hymenoptera: Megachilidae) in an agro-ecosystem. Apidologie 43: 624–633.CrossRefGoogle Scholar
  31. Torretta JP, Durante SP, Basilio AM. 2014. Nesting ecology of Megachile (Chrysosarus) catamarcensis Schrottky (Hymenoptera: Megachilidae), a Prosopis-specialist bee. Journal of Apicultural Research 53: 590–598.CrossRefGoogle Scholar
  32. Villanueva-Gutiérrez R, Roubik DW. 2016. More than protein? Bee-flower interactions and effects of disturbance regimes revealed by rare pollen in bee nests. Arthropod-Plant Interactions 10: 9–20.CrossRefGoogle Scholar
  33. Vossler FG. 2013a. The oligolecty status of a specialist bee of South American Prosopis (Fabaceae) supported by pollen analysis and floral visitation methods. Organisms Diversity and Evolution 13: 513–519.CrossRefGoogle Scholar
  34. Vossler FG. 2013b. Estudio palinológico de las reservas alimentarias (miel y masas de polen) de “abejas nativas sin aguijón” (Hymenoptera, Apidae, Meliponini): un aporte al conocimiento de la interacción abeja-planta en el Chaco Seco de Argentina. Doctoral Thesis. Universidad Nacional de La Plata; La Plata, Argentina. 152 pp.Google Scholar
  35. Vossler FG. 2014. A tight relationship between the solitary bee Calliopsis (Ceroliopoeum) laeta (Andrenidae, Panurginae) and Prosopis pollen hosts (Fabaceae, Mimosoideae) in xeric South American woodlands. Journal of Pollination Ecology 14: 270–277.Google Scholar
  36. Vossler FG, Tellería MC, Cunningham M. 2010. Floral resources foraged by Geotrigona argentina (Apidae, Meliponini) in the Argentine Dry Chaco forest. Grana 49: 142–153.CrossRefGoogle Scholar
  37. Zuloaga FO, Morrone O, Belgrano MJ. 2008. Catálogo de las plantas vasculares del cono sur (Argentina, Sur de Brasil, Chile, Paraguay y Uruguay). Volumes 1–3. Monographs in Systematic Botany from the Missouri Botanical Garden 107: 1–983, 985–2286, 2287–3348.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratorio de Actuopalinología, CICyTTP-CONICET/FCyT-UADER, Dr. Materi y EspañaDiamanteArgentina

Personalised recommendations