Advertisement

Nesting Ecology of Stingless Bees in Africa

  • Robert Kajobe
  • David W. Roubik
Chapter

Abstract

The exact number of species of stingless bees in Africa is not yet known because of gaps in research, but 24 species in 8 genera are discussed herein. Afrotropical meliponines have fewer species but appear more diverse than Asian fauna, primarily by including larger bees, exposed nesting, or cleptobiotic species. Nests are made in active termite or ant nests, in the ground, and in tree cavities or exposed on woody stems; nest entrances tend to be small and not intensely defended by biting. No diseases have been documented for the stingless bees of Africa, yet predation including invertebrates, birds, and apes likely influenced bee nesting biology and behavior. Since before the Tertiary, when Africa received its stingless bees from Brazilian ancestors, a distinctive meliponine fauna evolved but is now the least species-rich of major tropical regions.

References

  1. Aidoo K, Kwapong P, Combey R, Karikari A. 2011. Stingless bees in Ghana. Bees for Development 100: 10–11.Google Scholar
  2. Biesmeijer JC, Slaa EJ, Koedam D. 2007. How stingless bees solve traffic problems. Entomologische Berichten-Nederlandsche Entomologische Vereenigung 67: 7–13.Google Scholar
  3. Boesch C, Head J, Robbins MH. 2009. Complex tool sets for honey extraction among chimpanzees in Loango National Park, Gabon. Journal of Human Evolution 56: 560–569.CrossRefPubMedGoogle Scholar
  4. Byarugaba D. 2004. Stingless bees (Hymenoptera: Apidae) of Bwindi impenetrable forest, Uganda and Abayanda indigenous knowledge. International Journal of Tropical Insect Science 24: 117–121.CrossRefGoogle Scholar
  5. Cardinal S., Buchmann, SL, Russell AL. In press. The evolution of floral sonication, a foraging behavior used by bees. Evolution.Google Scholar
  6. Camargo JMF. 2013. Historical biogeography of the Meliponini (Hymenoptera, Apidae, Apinae) of the Neotropical region. pp. 19–34. In Vit P, Pedro SRM, Roubik DW, eds. Pot-honey: a legacy of stingless bees. Springer, New York, USA. 654 pp.CrossRefGoogle Scholar
  7. Camargo JMF, Wittmann, D. 1989. Nest architecture and distribution of the primitive stingless bee, Mourella caerulea (Hymenoptera, Apidae, Meliponinae): Evidence for the origin of Plebeia (s. lat.) on the Gondwana continent. Studies on Neotropical Fauna and Environment 24: 213–229.CrossRefGoogle Scholar
  8. Cortopassi-Laurino M, Nogueira-Neto P. 2016. Abelhas sem ferrão do Brasil. Editora da Universidade de São Paulo. 123 pp.Google Scholar
  9. Couvillon MJ, Wenseleers T, Imperatriz-Fonseca VL, Nogueira-Neto P, Ratnieks FLW. 2008. Comparative study in stingless bees (Meliponini) demonstrates that nest entrance size predicts traffic and defensivity. Journal of Evolutionary Biology 21: 194–201.CrossRefPubMedGoogle Scholar
  10. Darchen R. 1972. Ecologie de quelques trigones (Trigona sp.) de la savane de Lamto (Cote D’Ivoire). Apidologie 3: 341–367.CrossRefGoogle Scholar
  11. Darlington PJ Jr. 1957. Zoogeography: the geographic distribution of animals. John Wiley and Sons, New York. 675 pp.Google Scholar
  12. Eardley CD. 2004. Taxonomic revision of the African stingless bees (Apoidea: Apidae: Apinae: Meliponini). African Plant Protection 10: 63–96.Google Scholar
  13. Eardley CD, Urban, R. 2010. Catalogue of Afrotropical bees (Hymenoptera: Apoidea: Apiformes). Zootaxa 2455: 1–548.Google Scholar
  14. Eardley CD, Kuhlmann M, Pauly A. 2010. The Bee Genera and Subgenera of sub-Saharan Africa. ABC Taxa vol 7: i-vi, 138 pp. http://www.abctaxa.be/volumes/vol-7-bees
  15. Eardley CD, Kwapong P. 2013. Taxonomy as a tool for conservation of African stingless bees and their honey. pp 261–268. In: Vit P, Pedro SRM, Roubik DW, eds. Pot-honey: a legacy of stingless bees. Springer. New York. 654 pp.Google Scholar
  16. Eltz T, Bruhl CA, Imiyabir Z, Linsenmair KE. 2003. Nesting and nest trees of stingless bees (Apidae: Meliponini) in lowland dipterocarp forests of Sabah, Malaysia, with implications for forest management. Forest Ecology and Management 172: 301–313.CrossRefGoogle Scholar
  17. Fabre Anguilet EC, Nguyen BK, Bengone Ndong T, Haubruge E, Francis F. 2015. Meliponini and Apini in Africa (Apidae: Apinae): a review on the challenges and stakes bound to their diversity and their distribution. Biotechnologie, Agronomie, Société et Environnement 19: 382–391.Google Scholar
  18. Fletcher DJC, Crewe RM. 1981. Nest structure and thermoregulation in the stingless bee, Trigona (Plebeina) denoiti Vachal (Hymenoptera: Apidae). J. Ent. Soc. South Africa 44, 183-196.Google Scholar
  19. Flower BP, Kennett JP. 1994. The middle Miocene climatic transition: East Antarctic ice sheet development, deep ocean circulation and global carbon cycling. Palaeogeography, Palaeoclimatology, Palaeoecology 108: 537–555.CrossRefGoogle Scholar
  20. Gikungu MW. 2006. Bee diversity and some aspects of their ecological interactions with plants in a successional tropical community. Ph.D. Dissertation, University of Bonn, 201 pp.Google Scholar
  21. Grüter C, Menezes C, Imperatriz-Fonseca VL, Ratnieks FL. 2012. A morphologically specialized soldier caste improves colony defense in a neotropical eusocial bee. Proceedings of the National Academy of Sciences 109: 1182–1186.CrossRefGoogle Scholar
  22. Halcroft M. 2013. Australian stingless bees. pp. 35–72 In: Vit P, Pedro SRM, Roubik DW, eds. Pot-honey: a legacy of stingless bees. New York, Springer. 654 pp.CrossRefGoogle Scholar
  23. Hubbell SP, Johnson LK. 1977. Competition and nest spacing in a tropical stingless bee community. Ecology 58: 949–963.CrossRefGoogle Scholar
  24. Jalil AH, Roubik DW, eds. 2017. Handbook of Meliponiuclture. The Indo-Malayan Stingless bee clade. Akademi Kelulut Malaysia Sdn Bhd, Selangor, Malaysia. 560 pp.Google Scholar
  25. Kajobe R. 2007. Nesting biology of equatorial Afrotropical stingless bees (Apidae; Meliponini)in Bwindi Impenetrable National Park, Uganda. J. Apic. Res. 464: 245–255.CrossRefGoogle Scholar
  26. Kajobe R. 2008. Foraging behaviour of equatorial Afrotropical stingless bees: habitat selection and competition for resources (Doctoral dissertation). Utrecht University Repository.Google Scholar
  27. Kajobe R, Roubik DW. 2006. Honey-making bee colony abundance and predation by apes and humans in a Uganda forest reserve. Biotropica 38: 1–9.CrossRefGoogle Scholar
  28. Kerr WE, Maule V. 1964. Geographic distribution of stingless bees and its implications. Journal of the New York Entomological Society 72: 2–17.Google Scholar
  29. Linder HP. 2014. The evolution of African plant diversity. Frontiers in Ecology and Evolution. doi:  10.3389/fevo.2014.00038
  30. Macharia J, Raina SK, Muli E. 2007. Stingless bees in Kenya, Bees for Development Journal, 83: 1–9.Google Scholar
  31. Martins AC, Melo GAR, Renner SS. 2014. The corbiculate bees arose from New World oil-collecting bees: Implications for the origin of pollen baskets. Molecular Phylogenetics and Evolution 80: 88–94.CrossRefPubMedGoogle Scholar
  32. Michener CD. 1974. The social behaviour of the bees: a comparative study. Belknap Press of Harvard University Press, Cambridge, Massachusetts. 404 pp.Google Scholar
  33. Michener CD. 1979. Biogeography of the bees. Ann. Mo. Bot. Gard. 66: 277–347.CrossRefGoogle Scholar
  34. Michener CD. 2007. The bees of the world, 2nd Ed. Baltimore, 953 pp.Google Scholar
  35. Mogho Njoya MT. 2009. Diversity of stingless bees in Bamenda Afromontane Forests–Cameroon: nest architecture, behaviour and labour calendar. Diss. PhD thesis: Wilhelms Universität Bonn-Institut für Nutzpflanzenwissenschaften und Ressourcenschutz Rheinische Friedrich (Deutschland). http://hss.ulb.uni-bonn.de/2010/1993/1993.pdf
  36. Morley RJ. 2000. Origin and evolution of tropical rain forests. John Wiley and Sons, New York. 309 pp.Google Scholar
  37. Moure JS. 1961. A preliminary supra-specific classification of the old world meliponine bees (Hymenoptera, Apoidea). Studia Entomologica 4: 181–242.Google Scholar
  38. Munyuli T. 2010. Pollinator population in the farmlands in Central Uganda. Ph.D. Thesis. Makerere University; Kampala, Uganda. 431 pp.Google Scholar
  39. Namu FN, Wittmann D. 2014. Are stingless bees the primary vector in spread of banana Xanthomonas wilt in Central Uganda? International Journal of Ecology and Ecosolution 1: 52–60.Google Scholar
  40. Njau MA, Mpuya PM, Mturi FA. 2009. Apiculture potential in protected areas: the case of Udzungwa Mountains National Park, Tanzania. International Journal of Biodiversity Science & Management 5: 95–101.CrossRefGoogle Scholar
  41. Nkoba K. 2012. Distribution, behavioural biology, rearing and pollination efficiency of five stingless bee species (Apidae: meliponinae) in Kakamega forest, Kenya. D. Phil. Thesis. Kenyatta University; Nairobi, Kenya. 237 pp.Google Scholar
  42. Nogueira-Neto P. 1997. Vida e criação de abelhas indígenas sem ferrão. Editora Nogueirapis; São Paulo, Brazil. 445 pp.Google Scholar
  43. Pauly A. 1998. Hymenoptera Apoidea du Gabon. Musée Royal de l’Afrique Centrale Tervuren, Belgique. Annales Sciences Zoologique, 282: 1–121.Google Scholar
  44. Pauly A, Fabre Anguilet EC. 2013. Description de Liotrigona gabonensis sp. nov., et quelques corrections à la synonymie des espèces africaines de mélipones (Hymenoptera Apoidea Apinae : Meliponini). Belgian Journal of Entomology 15: 1–13.Google Scholar
  45. Pauly A, Hora ZA. 2013. Apini and Meliponini from Ethiopia (Hymenoptera: Apoidea: Apidae: Apinae). Belgian Journal of Entomology 16: 1–35.Google Scholar
  46. Poinar GO, Danforth BN. 2006. A fossil bee from Early Cretaceous Burmese amber. Science 314(5799): 614.CrossRefPubMedGoogle Scholar
  47. Portugal-Araujo V. 1963. Subterranean nests of two African stingless bees (Hymenoptera: Apidae). Journal of the New York Entomological Society 1:130–141.Google Scholar
  48. Rasmussen C, Cameron SA. 2007. A molecular phylogeny of the Old World stingless bees (Hymenoptera: Apidae: Meliponini) and the non-monophyly of the large genus Trigona. Systematic Entomology 32: 26–39.CrossRefGoogle Scholar
  49. Rasmussen C, Cameron, SA. 2010. Global stingless bee phylogeny supports ancient divergence, vicariance, and long distance dispersal. Biological Journal of the Linnean Society 99: 206–232.CrossRefGoogle Scholar
  50. Rasmussen C, Camargo JMF. 2008. A molecular phylogeny and the evolution of nest architecture and behavior in Trigona s.s. (Hymenoptera: Apidae: Meliponini). Apidologie 39: 102. doi: 10.1051/apido:2007051 CrossRefGoogle Scholar
  51. Rasmussen C, Gonzalez VH. 2013. Prologue. Stingless bees now and in the future. pp 1–7. In Vit P, Roubik DW, eds. Stingless Bees Process Honey and Pollen in Cerumen Pots. Facultad de Farmacia y Bioanálisis; Universidad de los Andes, Mérida, Venezuela. http://www.saber.ula.ve/handle/123456789/35292
  52. Roubik DW. 1979. Africanized honey bees, stingless bees and the structure of tropical plant-pollinator communities. pp. 403–417 In: Caron D, ed. Proceedings V th International Symposium on Pollination. Maryland Agricultural Experimental Station Miscellaneous Publication No. 1 College Park, Maryland. 274 pp.Google Scholar
  53. Roubik DW. 1989. Ecology and natural history of tropical bees. Cambridge University Press, New York. 514 pp.CrossRefGoogle Scholar
  54. Roubik DW. 1990. Niche preemption in tropical bee communities: a comparison of Neotropical and Malesian faunas. pp. 245-257 In: Sakagami SF, Ohgushi R, Roubik DW (eds.). Natural history of social wasps and bees in equatorial Sumatra. Hokkaido University Press, Japan. 274 pp.Google Scholar
  55. Roubik DW. 1992. Stingless bees (Apidae: Meliponinae): a guide to Panamanian and Mesoamerican species and their nests. pp. 495–524 In: Quintero D, Aiello A (eds.) Insects of Panama and Mesoamerica. Oxford University Press. Oxford, UK. 692 pp.Google Scholar
  56. Roubik DW. 1996. Order and chaos in tropical bee communities. pp. 122–132 In: Garófalo CA et al. (eds.). Segundo Encontro sobre Abelhas de Ribeirão Preto; São Paulo, Brazil. 216 pp.Google Scholar
  57. Roubik DW. 1999. The foraging and potential pollination outcrossing distances flown by African honey bees in Congo forest. Journal of the Kansas Entomological Society 72: 394–401.Google Scholar
  58. Roubik DW. 2006. Stingless bee nesting biology. Apidologie 37: 124–143.CrossRefGoogle Scholar
  59. Roubik DW, Camargo JMF. 2012. The Panama microplate, island studies and relictual species of Melipona (Melikerria) (Hymenoptera: Apidae: Meliponini). Systematic Entomology 37: 189–199.CrossRefGoogle Scholar
  60. Sakagami SF. 1982. Stingless bees. pp. 361–423 In: Hermann HR (ed.). Social insects Volume 3. Academic Press; New York, USA. 459 pp.Google Scholar
  61. Smith FG. 1954. Notes on the biology and waxes of four species of African Trigona bees (Hymenoptera, Apidae). Proceedings of the Entomological Society of London 29: 62-70.CrossRefGoogle Scholar
  62. Tornyie F, Kwapong PK. 2015. Nesting ecology of stingless bees and potential threats to their survival within selected landscapes in the northern Volta region of Ghana. African Journal of Ecology doi:  10.1111/aje.12208.CrossRefGoogle Scholar
  63. Wille A. 1983. Biology of the stingless bees. Annual Review of Entomology 28: 41–64.CrossRefGoogle Scholar
  64. Wille A, Michener CD. 1973. The nest architecture of stingless bees with special reference to those of Costa Rica. Revista de Biologia Tropical 21: 1–278.Google Scholar
  65. Wilson EO. 1971. The Insect Societies. Belknap Press; Cambridge, Massachusetts, USA. 562 pp.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National Agricultural Research Organisation (NARO)Rwebitaba Zonal Agricultural Research and Development Institute (Rwebitaba ZARDI)Fort PortalUganda
  2. 2.Smithsonian Tropical Research InstituteCalle PortobeloBalboaRepublic of Panama
  3. 3.National Museum of Natural HistoryWashington, DCUSA

Personalised recommendations