Lobar Ultrasonography in the Diagnosis of the Benign and Malignant Lesions of the Male Breast

  • Aristida Colan-GeorgesEmail author


This chapter describes and illustrates a new approach of the diagnosis of the male breast, with distinction between the physiological and pathological gynecomastia, pseudo-gynecomastia, and male breast cancer. The anatomical Ultrasonography (US) scanning and interpreting using the radial and antiradial technique offers the possibility to understand the development of the lobar architecture of the male breast similar to the first stages of development of the female breast. The use of Doppler and of the sonoelastography (SE) as complementary techniques realizes a new concept of the Full Breast US (FBU), which allows a better differential diagnosis and may reduce both unnecessary biopsies and the cost of additional techniques of radiological and imaging diagnosis.


Male breast Ultrasonography Lobar ultrasound anatomy Gynecomastia Male breast cancer 


  1. 1.
    Braunstein GD. Gynecomastia. N Engl J Med. 2007;357(12):1229–37.CrossRefPubMedGoogle Scholar
  2. 2.
    Georgescu A, Enachescu V. The diagnosis of gynecomastia by Doppler ductal US: etiopathogenic, endocrine and imaging correlations. Vienna: ECR; 2010. Scholar
  3. 3.
    Johnson ER, Murad M. Gynecomastia: pathophysiology, evaluation, and management. Mayo Clin Proc. 2009;84(11):1010–5. Scholar
  4. 4.
    Georgiadis E, Papandreou L, Evangelopoulou C, et al. Incidence of gynaecomastia in 954 young males and its relationship to somatometric parameters. Ann Hum Biol. 1994;21(6):579–87.CrossRefPubMedGoogle Scholar
  5. 5.
    Niewoehner CB, Nuttal FQ. Gynecomastia in a hospitalized male population. Am J Med. 1984;77(4):633–8.CrossRefPubMedGoogle Scholar
  6. 6.
    Nordt CA, DiVasta AD. Gynecomastia in adolescents. Curr Opin Pediatr. 2008;20(4):375–82.CrossRefPubMedGoogle Scholar
  7. 7.
    McKiernan JF, Hull D. Breast development in the newborn. Arch Dis Child. 1981;56(7):525–9.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Hines SL, Tan WW, Yasrebi M, DePeri ER, Perez EA. The role of mammography in male patients with breast symptoms. Mayo Clin Proc. 2007;82(3):297–300.CrossRefPubMedGoogle Scholar
  9. 9.
    Ganmaa D, Sato A. The possible role of female sex hormones in milk from pregnant cows in the development of breast, ovarian and corpus uteri cancers. Med Hypotheses. 2005;65(6):1028–37.CrossRefPubMedGoogle Scholar
  10. 10.
    Murayama K, Oshima T, Ohyama K. Exposure to exogenous estrogen through intake of commercial milk produced from pregnant cows. Pediatr Int. 2010;52(1):33–8. Scholar
  11. 11.
    Marshall WA, Tanner JM. Variations in pattern of pubertal changes in girls. Arch Dis Child. 1969;44(235):291–303.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Evans GF, Anthony T, Turnage RH, et al. The diagnostic accuracy of mammography in the evaluation of male breast disease. Am J Surg. 2001;181:96–100.CrossRefPubMedGoogle Scholar
  13. 13.
    Colan-Georges A. Atlas of full breast ultrasonography. New York, NY: Springer; 2016.CrossRefGoogle Scholar
  14. 14.
    Teboul M, Halliwell M. Atlas of ultrasound and ductal echography of the breast. Oxford: Blackwell Science Inc; 1995.Google Scholar
  15. 15.
    Teboul M. Practical ductal echography: guide to intelligent and intelligible Ultrasound imaging of the breast. Madrid: Saned Editors; 2003.Google Scholar
  16. 16.
    Joyce JA, Pollard JW. Microenvironmental regulation of metastasis. Nat Rev Cancer. 2009;9(4):239–52.CrossRefGoogle Scholar
  17. 17.
    Khamis ZI, Sahab ZJ, Sang Q-XA. Active roles of tumor stroma in breast cancer metastasis. Int J Breast Cancer. 2012;2012:574025. 10 pages. Scholar
  18. 18.
    Georgescu A, Enachescu V. The diagnosis of gynecomastia by Doppler ductal US. Etiopathogenic, endocrine and imaging correlations – partial data. Med Ultrason. 2009;11(3):33–40.Google Scholar
  19. 19.
    Ueno E, Iboraki P. Clinical application of US elastography in the diagnosis of breast disease. ECR 5–9 March, Vienna, Austria. 2004.Google Scholar
  20. 20.
    Olsson H, Bladstrom A, Alm P. Male gynecomastia and risk for malignant tumours – a cohort study. BMC Cancer. 2002;2:26. Scholar
  21. 21.
    Camus MG, Joshi MG, Mackarem G, et al. Ductal carcinoma in situ of the male breast. Cancer. 1994;74(4):1289–93.CrossRefPubMedGoogle Scholar
  22. 22.
    Kobayashi T. Clinical ultrasound of the breast. New York, NY: Springer; 1978.CrossRefGoogle Scholar
  23. 23.
    Desai DC, Brennan EJ Jr, Carp NZ. Paget’s disease of the male breast. Am Surg. 1996;62(12):1068–72.PubMedGoogle Scholar
  24. 24.
    Karakas C. Paget’s disease of the breast. J Carcinog. 2011;10:31. Scholar
  25. 25.
    Hayes R, Cummings B, Miller RA, Guha AK. Male Paget’s disease of the breast. J Cutan Med Surg. 2000;4(4):208–12.CrossRefPubMedGoogle Scholar
  26. 26.
    Gunhan-Bilgen I, Oktay A. Paget’s disease of the breast: clinical, mammographic, sonographic and pathologic findings in 52 cases. Eur J Radiol. 2006;60:256–63.CrossRefPubMedGoogle Scholar
  27. 27.
    Weiss RJ, Moysich BK, Swede H. Epidemiology of male breast cancer. Cancer Epidemiol Biomarkers Prev. 2005;14(1):20–6.PubMedGoogle Scholar
  28. 28.
    Jackman RJ, Nowels KW, Rodriguez-Soto J, et al. Stereo-tactic, automated, large core needle biopsy of nonpalpable breast lesions: false-negative and histologic underestimation rates after long-term follow-up. Radiology. 1999;210:799–805.CrossRefPubMedGoogle Scholar
  29. 29.
    Hertl K, Marolt-Musik M, Kocijancic I, et al. Haematomas after percutaneous vacuum-assisted breast biopsy. Ultraschall Med. 2007;30:33–6.CrossRefGoogle Scholar
  30. 30.
    Stavros AT, Rapp LC, Parker HS. Breast ultrasound. Philadelphia, PA: Lippincott Williams & Wilkins; 2004.Google Scholar
  31. 31.
    Stavros AT, Thickman D, Rapp CL, Dennis MA, Parker SH, Sisney GA. Solid breast nodules: use of sonography to distinguish between benign and malignant lesions. Radiology. 1995;196:123–34.CrossRefPubMedGoogle Scholar
  32. 32.
    American College of Radiology. Illustrated breast imaging reporting and data system (BI-RADS): ultrasound. Reston, VA: American Coll. of Radiology; 2003. Scholar
  33. 33.
    D’Orsi CJ, Sickles EA, Mendelson EB, et al. ACR BI-RADS ® Atlas, breast imaging reporting and data system. Reston VA: American Coll. of Radiology; 2013.Google Scholar
  34. 34.
    Kujiraoka Y, Ueno E, Yohno E, et al. Incident angle of the plunging artery of breast tumors. In:Research and development in breast ultrasound. Tokyo: Springer; 2005. p. 72–5.CrossRefGoogle Scholar
  35. 35.
    Georgescu A, Bondari S, Manda A, Andrei EM. The differential diagnosis between breast cancer and fibro-micro-cystic dysplasia by full breast US - a new approach. Vienna: ECR; 2012. EPOS™.
  36. 36.
    Ruddy KJ, Winer EP. Male breast cancer: risk factors, biology, diagnosis, treatment, and survivorship. Ann Oncol. 2013;24:1434. Scholar
  37. 37.
    Burga AM, Fadare O, Lininger RA, et al. Invasive carcinomas of the male breast: a morphologic study of the distribution of histologic subtypes and metastatic patterns in 778 cases. Virchows Arch. 2006;449(5):507–12.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Kornegoor R, Verschuur-Maes AH, Buerger H, et al. Molecular subtyping of male breast cancer by immunohistochemistry. Mod Pathol. 2012;25(3):398–404.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Imaging Center Prima MedicalCounty Clinical Emergency HospitalCraiovaRomania

Personalised recommendations