Advertisement

Differential Diagnosis of Breast Cancer by Doppler and Sonoelastography Applied to the Lobar Ultrasonography

  • Aristida Colan-Georges
Chapter

Abstract

The differential diagnosis of breast cancer and other breast findings, using the classical US examination, is not very well developed, and the breast biopsy rests the final tool of diagnosis. The anatomical US based on the radial scanning with lobar interpreting, completed by Doppler and sonoelastography, may reduce the false-positive and the false-negative diagnosis. This chapter describes and illustrates this new technique of diagnosis with new hierarchy of the US descriptors in addition to the US BI-RADS recommendations.

Keywords

Breast ultrasonography Radial scanning Differential diagnosis Doppler characterization Sonoelastography 

References

  1. 1.
    Stavros AT, Thickman D, Rapp CL, Dennis MA, Parker SH, Sisney GA. Solid breast nodules: use of sonography to distinguish between benign and malignant lesions. Radiology. 1995;196:123–34.CrossRefPubMedGoogle Scholar
  2. 2.
    Sala M, Salas D, Belvis F, et al. Reduction in false-positive results after introduction of digital mammography: analysis from four population-based breast cancer screening programs in Spain. Radiology. 2011;258(2):388–95.  https://doi.org/10.1148/radiol.10100874.CrossRefPubMedGoogle Scholar
  3. 3.
    Pisano ED, Gatsonis C, Hendrick E, et al. Diagnostic performance of digital versus film mammography for breast-cancer screening. N Engl J Med. 2005;353:1773–83.CrossRefPubMedGoogle Scholar
  4. 4.
    Brem RF, Tabár L, Duffy SW, et al. Assessing improvement in detection of breast cancer with three-dimensional automated breast us in women with dense breast tissue: the SomoInsight study. Radiology. 2015;274(3):663–73.  https://doi.org/10.1148/radiol.14132832.CrossRefPubMedGoogle Scholar
  5. 5.
    Berg WA, Zhang Z, Lehrer D, et al. Detection of breast cancer with addition of annual screening ultrasound or a single screening MRI to mammography in women with elevated breast cancer risk. JAMA. 2012;307(13):1394–404. (ISSN: 1538-3598).CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Teboul M, Halliwell M. Atlas of ultrasound and ductal echography of the breast (Relié). London: Blackwell Science Inc; 1995.Google Scholar
  7. 7.
    Teboul M. Practical ductal echography: guide to intelligent and intelligible Ultrasound imaging of the breast. Madrid: Saned Editors; 2003.Google Scholar
  8. 8.
    Tot T. Subgross morphology, the sick lobe hypothesis, and the success of breast conservation. Int J Breast Cancer. 2011;2011:634021 . 8 p.  https://doi.org/10.4061/2011/634021.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Amy D. Lobar ultrasound of the breast. In: Tot T, editor. Breast cancer. London: Springer; 2010.  https://doi.org/10.1007/978-1-84996-314-5_8.CrossRefGoogle Scholar
  10. 10.
    Amy D, Durante E, Tot T. The lobar approach to breast ultrasound imaging and surgery. J Med Ultrasonics. 2015;42:331.  https://doi.org/10.1007/s10396-015-0625-5.CrossRefGoogle Scholar
  11. 11.
    Colan-Georges A. Atlas of full breast ultrasonography. New York, NY: Springer; 2016.CrossRefGoogle Scholar
  12. 12.
    D’Orsi CJ, Sickles EA, Mendelson EB, Morvis EA, et al. ACR BI-RADS ® Atlas, breast imaging reporting and data system. Reston, VA: American College of Radiology; 2013.Google Scholar
  13. 13.
    Bamber JC, Sambrook M, Minassian H, Hill CR. Doppler studies of blood flow in breast cancer. In: Jellins J, Kobayashi T, editors. Ultrasonic examination of the breast. Chichester: John Wiley & Sons; 1983. p. 371–8.Google Scholar
  14. 14.
    Ramos IM, Taylor KJW, Kier R, Burns PN, Snower DP, Carter D. Tumor vascular signals in renal masses: detection with Doppler US. Radiology. 1988;168:633–7.CrossRefPubMedGoogle Scholar
  15. 15.
    Shimamoto K, Sakuma S, Ishigaki T, Ishiguchi T, Itoh S, Fukatsu H. Hepatocellular carcinoma: evaluation with color Doppler US and MR imaging. Radiology. 1992;182:149–53.CrossRefPubMedGoogle Scholar
  16. 16.
    Gasparini G, Weidner N, Bevilacqua P, et al. Tumor microvessel density, p53 expression, tumor size, and peritumoral lymphatic vessel invasion are relevant prognostic markers in node-negative breast carcinoma. J Clin Oncol. 1994;12:454–66.CrossRefPubMedGoogle Scholar
  17. 17.
    Yang WT, Tse GMK, Lam PKW, et al. Correlation between color power Doppler sonographic measurement of breast tumor vasculature and immunohistochemical analysis of microvessel density for the quantitation of angiogenesis. J Ultrasound Med. 2002;21(11):1227–35.CrossRefPubMedGoogle Scholar
  18. 18.
    Kedar RP, Cosgrove D, McCready VR, Bamber JC, Carter ER. Microbubble contrast agent for color Doppler US: effect on breast masses: work in progress. Radiology. 1996;198:679–86.CrossRefPubMedGoogle Scholar
  19. 19.
    Van Esser S, Veldhuis WB, van Hillegersberg R, et al. Accuracy of contrast-enhanced breast ultrasound for pre-operative tumor size assessment in patients diagnosed with invasive ductal carcinoma of the breast. Cancer Imaging. 2007;7(1):63–8.  https://doi.org/10.1102/1470-7330.2007.0012.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kujiraoka Y, Ueno E, Yohno E, Morishima I, Tsunoda-Shimizu H. Incident angle of the plunging artery of breast tumors. In:Research and development in breast ultrasound. Tokyo: Springer; 2005. p. 72–5.CrossRefGoogle Scholar
  21. 21.
    Christopher C. Ultrasound elastography of breast lesions. Ultrasound Clin. 2011;6:407–15.  https://doi.org/10.1016/j.cult.2011.05.004.CrossRefGoogle Scholar
  22. 22.
    Georgescu A, Bondari S, Manda A, Andrei E-M. The differential diagnosis between breast cancer and fibro-micro-cystic dysplasia by full breast ultrasonography-a new approach. Vienna: ECR; 2012.  https://doi.org/10.1594/ecr2012/C-0167. EPOS™.
  23. 23.
    Stavros AT, Rapp LC, Parker HS. Breast ultrasound. Philadelphia, PA: Lippincott Williams & Wilkins; 2004.Google Scholar
  24. 24.
    Georgescu A, Enachescu V, Bondari A, et al. A new concept: the full breast ultrasound in avoiding false negative and false-positive sonographic errors. Vienna: ECR; 2011.  https://doi.org/10.1594/ecr2011/C-0449.CrossRefGoogle Scholar
  25. 25.
    Venta LA, Kim JP, Pelloski CE, et al. Management of complex breast cysts. Am J Roentgenol. 1999;173:1331–6.CrossRefGoogle Scholar
  26. 26.
    Teboul M. Advantages of ductal echography (DE) over conventional breast investigation in the diagnosis of breast malignancies. Med Ultrason. 2010;12(1):32–42.PubMedGoogle Scholar
  27. 27.
    Tot T. The theory of the sick breast lobe and the possible consequences. Int J Surg Pathol. 2007;15(4):369–75.  https://doi.org/10.1177/1066896907302225.CrossRefPubMedGoogle Scholar
  28. 28.
    Tot T. The theory of the sick lobe. In: Tot T, editor. Breast cancer: a lobar disease. London: Springer; 2011. p. 1–18.CrossRefGoogle Scholar
  29. 29.
    Holland R, Hendriks JH. Microcalcifications associated with ductal carcinoma in situ: mammographic-pathologic correlation. Semin Diagn Pathol. 1994;11(3):181–92.PubMedGoogle Scholar
  30. 30.
    Edmiston CE Jr, Walker AP, Krepel CJ, Gohr C. The nonpuerperal breast infection: aerobic and anaerobic microbial recovery from acute and chronic disease. J Infect Dis. 1990;162:695–9.CrossRefPubMedGoogle Scholar
  31. 31.
    Graf O, Helbich TH, Hopf G, Graf C, Sickles EA. Probably benign breast masses at US: is follow-up an acceptable alternative to biopsy? Radiology. 2007;244:87–93.CrossRefPubMedGoogle Scholar
  32. 32.
    Hertl K, Marolt-Musik M, Kocijancic I, et al. Haematomas after percutaneous vacuum assisted breast biopsy. Ultraschall Med. 2007;30:33–6.CrossRefGoogle Scholar
  33. 33.
    Jackman RJ, Nowels KW, Rodriguez-Soto J, et al. Stereo-tactic, automated, large core needle biopsy of nonpalpable breast lesions: false-negative and histologic underestimation rates after long-term follow-up. Radiology. 1999;210:799–805.CrossRefPubMedGoogle Scholar
  34. 34.
    Nielsen M, Christensen L, Andersen J. Radial scars in women with breast cancer. Cancer. 1987;59(5):1019–25.CrossRefPubMedGoogle Scholar
  35. 35.
    Georgescu AC, Andrei ME. Full breast ultrasonography as follow-up examination after a complex treatment of breast cancer. Vienna: ECR; 2015.  https://doi.org/10.1594/ecr2015/C-0266.CrossRefGoogle Scholar
  36. 36.
    Freedman GM, Fowble BL. Local recurrence after mastectomy or breast-conserving surgery and radiation. Oncology. 2000;14(11):1561–81. discussion 1581-2, 1582-4.PubMedGoogle Scholar
  37. 37.
    Dolphin G. The surgical approach to the “sick lobe”. In: Francescatti DS, Silverstein MJ, editors. Breast cancer: a new era in management. New York, NY: Springer; 2014. p. 113–32.CrossRefGoogle Scholar
  38. 38.
    Görkem SB, O’Connell AM. Abnormal axillary lymph nodes on negative mammograms: causes other than breast cancer. Diagn Interv Radiol. 2012;18:473–9.PubMedGoogle Scholar
  39. 39.
    American Cancer Society. Mammograms and other breast imaging tests. 2014. Last Medical Review: 12/8/2014 Last Revised: 4/25/2016; 2014 Copyright American Cancer Society.Google Scholar
  40. 40.
    Crippa F, Gerali A, Alessi A, Agresti R, Bombardieri E. FDG-PET for axillary lymph node staging in primary breast cancer. Eur J Nucl Med Mol Imaging. 2004;31(Suppl 1):S97–102.CrossRefPubMedGoogle Scholar
  41. 41.
    Javid S, Segara D, Lotfi P, Raza S, Golshan M. Can breast MRI predict axillary lymph node metastasis in women undergoing neoadjuvant chemotherapy. Ann Surg Oncol. 2010;17(7):1841–6.  https://doi.org/10.1245/s10434-010-0934-2.CrossRefPubMedGoogle Scholar
  42. 42.
    Misselt PN, Glazebrook KN, Reynolds C, et al. Predictive value of sonographic features of extranodal extension in axillary lymph nodes. J Ultrasound Med. 2010;29:1705–9.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Imaging Center Prima MedicalCounty Clinical Emergency HospitalCraiovaRomania

Personalised recommendations