Advertisement

Breast Elastography

  • Dominique Amy
  • Jeremy Bercoff
  • Ellison Bibby
Chapter

Abstract

The recent expansion of elastography amongst all the manufacturers has led to a rocketing increase in the number of examinations whose results are rather disappointing and very uneven. Some manufacturers (the pioneers) have a great experience, and they perfectly master this technique which was long frowned upon. There is an obvious discrepancy in the results which is partly linked to the various types of equipment available to the users, but there is also great unevenness due to the fact that this technique is very much operator dependent without training. A minimum expertise and training should allow the limitation of disparity in the results obtained and tone down that dependence. To recall the basic principles of elastography and make clear once again the technical recommendations for the carrying out of the examination has seemed more pertinent and essential in order to ensure the good use of this remarkable technique which has become an unavoidable part of the echographic examination of breasts. Part of the recent bibliography presented here bears witness to the good clinical results of this technique, and we have no need to repeat and reproduce them.

Keywords

Strain elastography Shear wave elastography Guidelines Lesion characterisation Therapy monitoring 

References

  1. 1.
    Yamakawa M, Shiina T. Strain estimation using the extended combined autocorrelation method. Jpn J Appl Phys. 2001;40:3872–6.CrossRefGoogle Scholar
  2. 2.
    Havre RF, Elde E, Gilja OH, Odegaard S, Eide GE, Matre K, Nesje LB. Freehand real-time elastography: impact of scanning parameters on image quality and in vitro intra- and interobserver validations. Ultrasound Med Biol. 2008;34:1638–50.CrossRefPubMedGoogle Scholar
  3. 3.
    Toh A, Ueno E, Tohno E, Kamma H, Takahashi H, Shiina T, Yamakawa M, et al. Breast disease: clinical application of US elastography for diagnosis. Radiology. 2006;239:341–50.CrossRefGoogle Scholar
  4. 4.
    Schwab F, Redling K, Siebert M, Schötzau A, Schoenenberger CA, Zanetti-Dällenbach R. Inter- and intra-observer agreement in ultrasound BI-RADS classification and real-time elastography Tsukuba score assessment of breast lesions. Ultrasound Med Biol. 2016;42(11):2622–9.CrossRefPubMedGoogle Scholar
  5. 5.
    Cho N, Moon WK, Chang JM, Kim SJ, Lyou CY, Choi HY. Aliasing artifact depicted on ultrasound (US)-elastography for breast cystic lesions mimicking solid masses. Acta Radiol. 2011;52(1):3–7.CrossRefPubMedGoogle Scholar
  6. 6.
    Thomas A, Degenhardt F, Farrokh A, Wojcinski S, Slowinski T, Fischer T. Significant differentiation of focal breast lesions: calculation of strain ratio in breast sonoelastography. Acad Radiol. 2010;17(5):558–63.CrossRefPubMedGoogle Scholar
  7. 7.
    Zhi H, Xiao XY, Yang HY, Ou B, Wen YL, Luo BM. Ultrasonic elastography in breast cancer diagnosis: strain ratio vs 5-point scale. Acad Radiol. 2010;17(10):1227–33.CrossRefPubMedGoogle Scholar
  8. 8.
    Baba H, Waki K, Murayama N, Iimura T, Miyauchi Y. Development of the FLR assistance for the strain ratio measurement in breast elastography. Medix. 2013;58:42–5.Google Scholar
  9. 9.
    Ueno E, Tohno E, Morishima I, Umemoto T, Waki K. A preliminary prospective study to compare the diagnostic performance of assist strain ratio versus manual strain ratio. J Med Ultrason (2001). 2015;42(4):521–31.CrossRefGoogle Scholar
  10. 10.
    Youk JH, Son EJ, Gweon HM, Kim H, Park YJ, Kim JA. Comparison of strain and shear wave elastography for the differentiation of benign from malignant breast lesions, combined with B-mode ultrasonography: qualitative and quantitative assessments. Ultrasound Med Biol. 2014;40(10):2336–44.CrossRefPubMedGoogle Scholar
  11. 11.
    Xiao Y, Yu Y, Niu L, Qian M, Deng Z, Qiu W, Zheng H. Quantitative evaluation of peripheral tissue elasticity for ultrasound-detected breast lesions. Clin Radiol. 2016;71(9):896–904.CrossRefPubMedGoogle Scholar
  12. 12.
    Jing H, Cheng W, Li ZY, Ying L, Wang QC, Wu T, Tian JW. Early evaluation of relative changes in tumor stiffness by shear wave elastography predicts the response to neoadjuvant chemotherapy in patients with breast cancer. J Ultrasound Med. 2016;35(8):1619–27.CrossRefPubMedGoogle Scholar
  13. 13.
    Evans A, Purdie CA, Jordan L, Macaskill EJ, Flynn J, Vinnicombe S. Stiffness at shear-wave elastography and patient presentation predicts upgrade at surgery following an ultrasound-guided core biopsy diagnosis of ductal carcinoma in situ. Clin Radiol. 2016. pii: S0009-9260(16)30267-7.  https://doi.org/10.1016/j.crad.2016.07.004.
  14. 14.
    Paczkowska K, Rzymski P, Kubasik M, Opala T. Sonoelastography in the evaluation of capsule formation after breast augmentation - preliminary results from a follow-up study. Arch Med Sci. 2016;12(4):793–8.CrossRefPubMedGoogle Scholar
  15. 15.
    Giannotti E, Vinnicombe S, Thomson K, McLean D, Purdie C, Jordan L, Evans A. Shear-wave elastography and greyscale assessment of palpable probably benign masses: is biopsy always required? Br J Radiol. 2016;89(1062):20150865.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Cha YJ, Youk JH, Kim BG, Jung WH, Cho NH. Lymphangiogenesis in breast cancer correlates with matrix stiffness on shear-wave elastography. Yonsei Med J. 2016;57(3):599–605.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Evans A, Sim YT, Thomson K, Jordan L, Purdie C, Vinnicombe SJ. Shear wave elastography of breast cancer: sensitivity according to histological type in a large cohort. Breast. 2016;26:115–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Liu B, Zheng Y, Huang G, Lin M, Shan Q, Lu Y, Tian W, Xie X. Breast lesions: quantitative diagnosis using ultrasound shear wave elastography - a systematic review and meta-analysis. Ultrasound Med Biol. 2016;42(4):835–47.CrossRefPubMedGoogle Scholar
  19. 19.
    Chamming’s F, Le-Frère-Belda MA, Latorre-Ossa H, Fitoussi V, Redheuil A, Assayag F, Pidial L, Gennisson JL, Tanter M, Cuénod CA, Fournier LS. Supersonic shear wave elastography of response to anti-cancer therapy in a xenograft tumor model. Ultrasound Med Biol. 2016;42(4):924–30.CrossRefPubMedGoogle Scholar
  20. 20.
    Bae JS, Chang JM, Lee SH, Shin SU, Moon WK. Prediction of invasive breast cancer using shear-wave elastography in patients with biopsy-confirmed ductal carcinoma in situ. Eur Radiol. 2017;27(1):7–15.CrossRefPubMedGoogle Scholar
  21. 21.
    Džoić Dominković M, Ivanac G, Kelava T, Brkljačić B. Elastographic features of triple negative breast cancers. Eur Radiol. 2016;26(4):1090–7.CrossRefPubMedGoogle Scholar
  22. 22.
    Ng WL, Rahmat K, Fadzli F, Rozalli FI, Mohd-Shah MN, Chandran PA, Westerhout CJ, Vijayananthan A, Abdul Aziz YF. Shearwave elastography increases diagnostic accuracy in characterization of breast lesions. Medicine (Baltimore). 2016;95(12):e3146.CrossRefGoogle Scholar
  23. 23.
    Lee S, Jung Y, Bae Y. Clinical application of a color map pattern on shear-wave elastography for invasive breast cancer. Surg Oncol. 2016;25(1):44–8.CrossRefPubMedGoogle Scholar
  24. 24.
    Kilic F, Velidedeoglu M, Ozturk T, Kandemirli SG, Dikici AS, Er ME, Aydogan F, Kantarci F, Yilmaz MH. Ex vivo assessment of sentinel lymph nodes in breast cancer using shear wave elastography. J Ultrasound Med. 2016;35(2):271–7.CrossRefPubMedGoogle Scholar
  25. 25.
    Choi JS, Han BK, Ko EY, Ko ES, Shin JH, Kim GR. Additional diagnostic value of shear-wave elastography and color Doppler US for evaluation of breast non-mass lesions detected at B-mode US. Eur Radiol. 2016;26(10):3542–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Skerl K, Vinnicombe S, Thomson K, Mclean D, Giannotti E, Evans A. Anisotropy of solid breast lesions in 2D shear wave elastography is an indicator of malignancy. Acad Radiol. 2016;23(1):53–61.CrossRefPubMedGoogle Scholar
  27. 27.
    Elseedawy M, Whelehan P, Vinnicombe S, Thomson K, Evans A. Factors influencing the stiffness of fibroadenomas at shear wave elastography. Clin Radiol. 2016;71(1):92–5.CrossRefPubMedGoogle Scholar
  28. 28.
    Bernal M, Chammings F, Couade M, Bercoff J, Tanter M, Gennisson JL. In vivo quantification of the nonlinear shear modulus in breast lesions: feasibility study. IEEE Trans Ultrason Ferroelectr Freq Control. 2016;63(1):101–9.CrossRefPubMedGoogle Scholar

References: SWE

  1. Athanasiou A, et al. Radiology. 2010;256(1):297–303.CrossRefPubMedGoogle Scholar
  2. Au FW, et al. AJR Am J Roentgenol. 2014;203(3):W328–36.CrossRefPubMedGoogle Scholar
  3. Awad FT. Egypt J Rad Nuc Med. 2013;44(3):681–5.CrossRefGoogle Scholar
  4. Bercoff J, et al. IEEE Trans Ultrason Ferroelect Freq Contr. 2004;51(4):396–408.CrossRefGoogle Scholar
  5. Berg WA, et al. Radiology. 2012;262(2):435–49.CrossRefPubMedGoogle Scholar
  6. Berg WA, et al. AJR Am J Roentgenol. 2015;205(2):448–55.CrossRefPubMedGoogle Scholar
  7. Çebi Olgun D, et al. Diagn Interv Radiol. 2014;20(3):239–44.CrossRefPubMedGoogle Scholar
  8. Chang JM, et al. AJR Am J Roentgenol. 2013;201(2):W347–56.CrossRefPubMedGoogle Scholar
  9. Chang JM, et al. Breast Cancer Res Treat. 2011;129(1):89–97.CrossRefPubMedGoogle Scholar
  10. Choi JS, et al. Eur Radiol. 2016;26(10):3542–9.CrossRefPubMedGoogle Scholar
  11. Cosgrove DO, et al. Eur Radiol. 2012;22(5):1023–32.CrossRefPubMedGoogle Scholar
  12. Dobruch-Sobczak K, et al. Ultrasound Med Biol. 2015;41(2):366–74.CrossRefPubMedGoogle Scholar
  13. Evans A, et al. Br J Cancer. 2012 Jul 10;107(2):224–9.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Evans A, et al. Breast Cancer Res Treat. 2014 Jan;143(1):153–7.CrossRefPubMedGoogle Scholar
  15. Feldmann A, et al. Ultrasound Med Biol. 2015;41(10):2594–604.CrossRefPubMedGoogle Scholar
  16. Gweon HM, et al. Eur Radiol. 2013 Nov;82(11):680–5.CrossRefGoogle Scholar
  17. Kim SJ, et al. Medicine (Baltimore). 2015 Oct;94(42):e1540.CrossRefGoogle Scholar
  18. Klotz T, et al. Diagn Interv Imaging. 2014;95(9):813–24.CrossRefPubMedGoogle Scholar
  19. Ko KH, et al. Eur Radiol. 2014;24(2):305–11.CrossRefPubMedGoogle Scholar
  20. Lee SH, et al. Eur Radiol. 2013;23(4):1015–26.CrossRefPubMedGoogle Scholar
  21. Lee SH, et al. Radiology. 2014;273(1):61–9.CrossRefPubMedGoogle Scholar
  22. Lee SH, et al. Practice guideline for the performance of breast ultrasound elastography. Ultrasonography. 2014;33(1):3–10.CrossRefPubMedGoogle Scholar
  23. Mullen, et al. Clin Radiol. 2004;69(12):1259–63.CrossRefGoogle Scholar
  24. Ng WL, et al. Medicine (Baltimore). 2016 Mar;95(12):e3146.CrossRefGoogle Scholar
  25. Park J, et al. Eur J Radiol. 2015;84(10):1943–8.CrossRefPubMedGoogle Scholar
  26. Plecha DM, et al. Radiology. 2014 Sep;272(3):657–64.CrossRefPubMedGoogle Scholar
  27. Shi XQ, et al. Ultrasound Med Biol. 2015;41(4):960–6.CrossRefPubMedGoogle Scholar
  28. Tanter M, et al. Ultrasound Med Biol. 2008;34(9):1373–86.CrossRefPubMedGoogle Scholar
  29. Tozaki M, Fukuma E. Acta Radiol. 2011;52(10):1069–75.CrossRefPubMedGoogle Scholar
  30. Youk JH, et al. Eur Radiol. 2013;23(10):2695–704.CrossRefPubMedGoogle Scholar
  31. Youk JH, et al. Ultrasonography. 2014;33(1):34–9.CrossRefPubMedGoogle Scholar
  32. Youk JH, et al. PLoS One. 2015;10(9):e0138074.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Zhou J, et al. Radiology. 2014 Jul;272(1):63–72.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centre du seinAix-en-ProvenceFrance
  2. 2.R&D Ultrasound DeptSSI SupersonicImagineAix-en-ProvenceFrance
  3. 3.Hitachi Medical Systems UKWellingboroughUK

Personalised recommendations