Genome Manipulation and Sex Control in the Siberian Sturgeon: An Updated Synthesis with Regard to Objectives, Constraints and Findings

Chapter

Abstract

The genome manipulations, such as gynogenesis or androgenesis, are widely applied in fish for artificial modification of chromosome set and allow the production of monosex stocks. Moreover, such manipulations enable rapid production of inbred populations that can be applied in crossbreeding programs. The application of the gynogenesis in sturgeons seems to be very important in creation of all-female stocks for caviar production. The Siberian sturgeon Acipenser baerii is the species most frequently cultured in European fish farms for black caviar. The production and all-female stocks of this species are highly desirable and commercially reasonable. Unfortunately, in Siberian sturgeon, the available sex identification methods are not effective for fish younger than age 3 years because these fish have no morphological sex specific features and no sex chromosomes were identified in this species. Therefore the direct production of all-female stock is very important. Although genome manipulations were successfully applied in the production of monosex populations of some fish species, especially with the XY sex-determination system, in Siberian sturgeon, such manipulations were characterized by low efficiency due to the low hatching rate. The present review provides a summary of genome manipulations in the Siberian sturgeon.

Keywords

Acipenseridae Genome manipulations Gynogenesis Siberian sturgeon 

Notes

Acknowledgments

This study was supported by NCN project number: 2013/09/B/NZ9/01817.

References

  1. Arai K (2001) Genetic improvement of aquaculture finfish species by chromosome manipulation techniques in Japan. Aquaculture 197:205–228CrossRefGoogle Scholar
  2. Arai K, Ikeno M, Suzuki R (1995) Production of androgenetic diploid loach Misgurnus anguillicaudatus using spermatozoa of natural tetraploids. Aquaculture 137:131–138CrossRefGoogle Scholar
  3. Babiak I, Dobosz S, Goryczko KH, Brzuzan P, Ciesielski S (2002) Androgenesis in rainbow trout using cryopreserved spermatozoa: the effect of processing and biological factors. Theriogenology 57(4):1229–1249CrossRefGoogle Scholar
  4. Bronzi P, Rosenthal H, Gessner J (2011) Global sturgeon aquaculture production: an overview. J Appl Ichthyol 27:169–175CrossRefGoogle Scholar
  5. Chapman FA, Van Eenennaam JP, Doroshov SI (1996) The reproductive condition of white sturgeon, Acipenser transmontanus, in San Francisco Bay, California. Fish Bull 94:628–634Google Scholar
  6. Chebanov M, Galich E (2009) Ultrasound diagnostics for sturgeon broodstock management. Izdatelstvo Prosveshenie-Yug, FSGTSR, KrasnodarGoogle Scholar
  7. Chourrout D, Quillet E (1982) Induced gynogenesis in the rainbow trout: sex and survival of progenies. Production of all-triploid populations. Theor Appl Genet 63:201–205CrossRefGoogle Scholar
  8. Devlin RH, Nagahama Y (2002) Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture 208:191–364CrossRefGoogle Scholar
  9. Divers SJ, Boone SS, Hoover JJ, Boysen KA, Killgore KJ, Murphy CE, George SG, Camus AC (2009) Field endoscopy for identifying gender, reproductive stage and gonadal anomalies in free-ranging sturgeon (Scaphirhynchus) from the lower Mississippi river. J Appl Ichthyol 25(2):68–74CrossRefGoogle Scholar
  10. Flynn SR, Matsuoka M, Reith M, Martin-Robichaud DJ, Benfey TJ (2006) Gynogenesis and sex determination in shortnose sturgeon, Acipenser brevirostrum Leisure. Aquaculture 253:721–727CrossRefGoogle Scholar
  11. Fopp-Bayat D (2007) Verification of meiotic gynogenesis in Siberian sturgeon (Acipenser baeriii) using microsatellite DNA and cytogenetical markers. J Fish Biol 77:478–485CrossRefGoogle Scholar
  12. Fopp-Bayat D (2010) Meiotic gynogenesis revealed not homogametic female sex determination system in Siberian sturgeon (Acipenser baerii Brandt). Aquaculture 305:174–177CrossRefGoogle Scholar
  13. Fopp-Bayat D, Woznicki P (2006) Verification of ploidy level in sturgeon larvae. Aquac Res 37:1671–1675CrossRefGoogle Scholar
  14. Fopp-Bayat D, Jankun M, Woznicki P (2006) Chromosome number and erythrocyte nuclei length in triploid Siberian sturgeon Acipenser baerii Brandt. Caryologia 59:319–321CrossRefGoogle Scholar
  15. Fopp-Bayat D, Kolman R, Woznicki P (2007) Induction of meiotic gynogenesis in sterlet (Acipenser ruthenus). Aquaculture 264:54–58CrossRefGoogle Scholar
  16. Grande L, Bemis WE (1991) Osteology and phylogenetic relationships of fossil and recent paddlefishes (Polyodontidae) with comments on the interrelationships of Acipenseriformes. J Vertebr Paleontol 11(1):1–121CrossRefGoogle Scholar
  17. Grunina AS, Neyfakh AA (1991) Induction of diploid androgenesis in Siberian sturgeon Acipenser baerii Brandt. Ontogenez 1:53–56Google Scholar
  18. Grunina AS, Recoubratsky AV (2005) Induced androgenesis in fish: obtaining viable nucleocytoplasmic hybrids. Russ J Dev Biol 36:254–264CrossRefGoogle Scholar
  19. Grunina AS, Recoubratsky AV, Emelyanova OV, Neyfakh AA (1995) Induced androgenesis in fish: production of viable androgenetic diploid hybrids. Aquaculture 137:149–149CrossRefGoogle Scholar
  20. Hurvitz A, Jackson K, Degani G, Levavi-Sivan B (2007) Use of endoscopy for gender and ovarian stage determinations in Russian sturgeon (Acipenser gueldenstaedtii) grown in aquaculture. Aquaculture 270(1–4):158–166CrossRefGoogle Scholar
  21. Jiménez DA, Peterson DL, Camus AC, Divers SJ (2014) Comparing ultrasonography and endoscopy for early gender identification of juvenile Siberian sturgeon. N Am J Aquac 76(1):14–23CrossRefGoogle Scholar
  22. Mair GC (1993) Chromosome-set manipulation in tilapia-techniques, problems and prospects. Aquaculture 111:227–244CrossRefGoogle Scholar
  23. Mims SD, Shelton WL (1998) Induced meiotic gynogenesis in shovelnose sturgeon. Aquac Int 6:323–329CrossRefGoogle Scholar
  24. Mims SD, Shelton WL, Linhart O, Wang C (1997) Induced meiotic gynogenesis of paddlefish, Polyodon spathula. J World Aquacult Soc 28:334–343CrossRefGoogle Scholar
  25. Mims S, Lazur A, Shelton W, Gomelsky B, Chapman F (2002) Species profile: production of sturgeon. Southern Regional Aquaculture Center SRAC, publ no. 7200. http://www.aquatic.org/publicat/usda_rac/efs/srac/7200fs.pdf. Accessed 01 Aug 2015
  26. Omoto N, Maebayashi M, Adach S, Arai K, Yamauchi K (2005) Sex ratios of triploids and gynogenetic diploids induced in the hybrid sturgeon, the bester (Huso huso female×Acipenser ruthenus male). Aquaculture 245:39–47CrossRefGoogle Scholar
  27. Pandian TJ, Koteeswaran R (1998) Ploidy induction and sex control in fish. Hydrobiologia 384:167–243CrossRefGoogle Scholar
  28. Patterson C (1982) Morphology and interrelationships of primitive actinopterygian fishes. Am Zool 22:241–259CrossRefGoogle Scholar
  29. Recoubratsky AV, Grunina AS, Minin AA, Duma LN, Neyfakh AA (1996) Dispermic Androgenesis in Acipenser stellatus. Sturgeon Q 4:12–14Google Scholar
  30. Recoubratsky AV, Grunina AS, Barmintsev VA, Golovanova TS, Chudinov OS, Abramova AB, Panchenko NS, Kupchenko SA (2003) Meiotic gynogenesis in the stellate and Russian sturgeon and sterlet. Russ J Dev Biol 34:92–101CrossRefGoogle Scholar
  31. Rochard E, Williot P, Castelnaud G, et Lepage M (1991) Eléments de systématique et de biologie des populations sauvages d’esturgeons. In Williot P (ed): Acipenser, Cemagref Publ.., Antony, France, p 475–507Google Scholar
  32. Romashov DD, Nikolyukin NI, Belyaeva VN, Timofeeva NA (1963) Possibilities of producing diploid radiation-induced gynogenesis in sturgeons. Radiobiology 3:145–154Google Scholar
  33. Saber MH, Noveiri S, Pourkazemi M, Yazdani M, Ghoroghi A, Bahmani M, Pourdehghani M, Chakmehdouz F, Yarmohammadi M, Nowruzfashkhami M (2014) Induction of meiotic gynogenesis in ship sturgeon using UV-irradiated heterologous sperm. J Appl Genet 55:223–229CrossRefGoogle Scholar
  34. Scheerer PD, Thorgaard GH, Allendorf FW, Knudsen KL (1986) Androgenetic rainbow trout produced from inbred and outbred sperm sources show similar surviwal. Aquaculture 57:289–298CrossRefGoogle Scholar
  35. Scheerer PD, Thorgaard GH, Allendorf FW (1991) Genetic analysis of androgenetic rainbow trout. J Exp Zool 260:382–390CrossRefGoogle Scholar
  36. Stahl MT, Whitledge GW, Kelly AM (2009) Reproductive biology of middle mississippi river shovelnose sturgeon: insights from seasonal and age variation in plasma sex steroid and calcium concentrations. J Appl Ichthyol 25:75–82CrossRefGoogle Scholar
  37. Takahashi S, Officer F (2010) Sturgeon conservation and the role of Japan. The State of Wildlife Trade in Japan 10:42–47Google Scholar
  38. Thorgaard GH, Scheerer PD, Parsons JE (1985) Residual paternal inheritance in gynogenetic rainbow trout, Salmo gairdneri: implications for gene transfer. Theor Appl Genet 71:119–121CrossRefGoogle Scholar
  39. Thorgaard GH, Scheerer PD, Hershberger WK, Myers JM (1990) Androgenetic rainbow trout produced using sperm from tetraploid males show improved survival. Aquaculture 85:215–221CrossRefGoogle Scholar
  40. Trested DG, Goforth R, Kirk JP, Isely JJ (2010) Survival of shovelnose sturgeon after abdominally invasive endoscopic evaluation. N Am J Fish Manag 30(1):121–125CrossRefGoogle Scholar
  41. Van Eenennaam AL, Van Eenennaam JP, Medrano JF, Doroshov SI (1996) Rapid verification of meiotic gynogenesis and polyploidy in white sturgeon (Acipenser transmontanus Richardson). Aquaculture 147:177–189CrossRefGoogle Scholar
  42. Varadaraj K, Pandian TJ (1988) Induction of triploids in Oreochromis mossambicus by thermal, hydrostatic pressure and chemical shocks. In: Proceedings of the aquaculture international congress and exposition. Vancouver, CanadaGoogle Scholar
  43. Vecsei P, Litvak MK, Noakes DLG, Rien T, Hochleithner M (2003) A noninvasive technique for determining sex of live adult North American sturgeons. Environ Biol Fish 68:333–338CrossRefGoogle Scholar
  44. Webb MAH, Feist GW, Foster EP, Schreck CB, Fitzpatrick MS (2002) Potential classification of sex and stage of gonadal maturity of wild white 70 sturgeon using blood plasma indicators. Trans Am Fish Soc 131:132–142CrossRefGoogle Scholar
  45. Wei QW, Zou Y, Li P, Li L (2011) Sturgeon aquaculture in China: progress, strategies and prospects assessed on the basis of nation-wide surveys (2007–2009). J Appl Ichthyol 27:162–168CrossRefGoogle Scholar
  46. Wildhaber ML, Papoulias DM, DeLonay AJ, Tillitt DE, Bryan JL, Annis ML, Allert JA (2005) Gender identification of shovelnose sturgeon using ultrasonic and endoscopic imagery and the application of the method to the pallid sturgeon. J Fish Biol 67(1):114–132CrossRefGoogle Scholar
  47. Williot P (2011) Sex determination and staging of gonads. In: Williot P, Rochard E, Desse-Berset N, Kirschbaum F, Gessner J (eds) Biology and conservation of the European sturgeon Acipenser sturio L. 1758. Springer, Berlin, pp 369–382CrossRefGoogle Scholar
  48. Williot P, Brun R (1998) Ovarian development and cycles in cultured Siberian sturgeon, Acipenser baerii. Aquat Living Resour 11(2):111–118CrossRefGoogle Scholar
  49. Williot P, Sabeau L, Gessner J, Arlati G, Bronzi P, Gulyas T, Berni P (2001) Sturgeon farming in Western Europe: recent developments and perspectives. Aquat Living Resour 14:367–374CrossRefGoogle Scholar
  50. Williot P, Arlati G, Chebanov M, Gulyas T, Kasimov R, Kirschbaum F, Patriche N, Pavlovskaya L, Poliakova L, Pourkazemi M, Kim Y, Zhuang P, Zholdasova IM (2002) Status and management of Eurasian sturgeon: an overview. Int Rev Hydrobiol 87:483–506CrossRefGoogle Scholar
  51. Woznicki P, Kuzminski H (2002) Chromosome number and erythrocyte nuclei length in triploid brook trout (Salvelinus fontinalis). Caryologia 55(4):295–298CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of IchthyologyUniversity of Warmia and Mazury in OlsztynOlsztynPoland

Personalised recommendations