Advertisement

Source Apportionment of PM2.5 in Handan City, China Using a Combined Method of Receptor Model and Chemical Transport Model

  • Zhe Wei
  • Litao Wang
  • Liquan Hou
  • Hongmei Zhang
  • Liang Yue
  • Wei Wei
  • Simeng Ma
  • Chengyu Zhang
  • Xiao Ma
Conference paper
Part of the Environmental Earth Sciences book series (EESCI)

Abstract

Handan is one of the top polluted cities in China, characterized by high concentration of fine particulate matter (PM2.5). In this paper, a receptor model, i.e., the Positive Matrix Factorization (PMF) model, and a chemical transport model, i.e., the Mesoscale Modeling System Generation 5 (MM5) and Models-3/Community Multiscale Air Quality (CMAQ) model, are both applied to apportion the sources of PM2.5 in Handan. It is concluded that regional sources contribute 36.0% of PM2.5, and within local sources, the contributions of major emission sectors are: 22.3% from coal combustion, 10.7% from metal smelting, 7.3% from Zn-OC-Ba, 18.5% from industry, 11.3% from transportation, 10.6% from biomass burning, and 19.2% from dust emissions. It indicates that regional joint air pollution controls should be emphasized in the future control strategy, and local source controls on coal combustion and industries are the key points to mitigate the severe PM2.5 pollution in Handan.

Keywords

PM2.5 Source apportionment PMF MM5-CMAQ Handan 

Notes

Acknowledgements

This study was sponsored by the National Natural Science Foundation of China (No. 41475131), Hebei Science Fund of Distinguished Young Scholars (No. D2017402086), the Program for the Outstanding Young Scholars of Hebei Province, the Hebei Support Program of Hundred Outstanding Innovative Talents from Universities (SLRC2017025), the Hebei Support Program of Hundred Outstanding Innovative Talents from Universities (SLRC2017025), Hebei Cultivating Project of Talent Development (A2016002022), the Innovation Team Leader Talent Cultivation Fund of Hebei University of Engineering.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. 1.
    MEP: 2013 report on the state of the environment in China. MEP, Beijing, China (2014). http://jcs.mep.gov.cn/hjzl/zkgb/2013zkgb/201406/t20140605_276521.htm. Accessed 20 Aug 2015. (in Chinese)
  2. 2.
    MEP: 2014 report on the state of the environment in China. MEP, Beijing, China (2015). http://jcs.mep.gov.cn/hjzl/zkgb/2014zkgb/201506/t20150608_303142.htm. Accessed 20 Aug 2015. (in Chinese)
  3. 3.
    Handan, B.S.: (Handan Bureau of Statistics): Handan Statistical Yearbook 2013. China Statistical Press, Beijing, China (2014)Google Scholar
  4. 4.
    Wang, L.T., Wei, Z., Yang, J., et al.: The 2013 severe haze over southern Hebei, China: model evaluation, source apportionment, and policy implications. Atmos. Chem. Phys. 14, 3151–3173 (2014).  https://doi.org/10.5194/acp-14-3151-2014CrossRefGoogle Scholar
  5. 5.
    Tang, X.Y., Zhang, Y.H., Shao, M.: Atmospheric Chemistry. Higher Education Press, Beijing, China (2006)Google Scholar
  6. 6.
    Zhang, Y.J., Zheng, M., Cai, J., et al.: Comparison and overview of PM2.5 source apportionment methods. China Sci. Bull. 60, 109–121 (2015).  https://doi.org/10.1360/N972014-00975. (in Chinese)CrossRefGoogle Scholar
  7. 7.
    Chueinta, W., Hopke, P.K., Paatero, P.: Investigation of sources of atmospheric aerosol at urban and suburban residential areas in Thailand by positive matrix factorization. Atmos. Environ. 34, 3319–3329 (2000).  https://doi.org/10.1016/S1352-2310(99)00433-1CrossRefGoogle Scholar
  8. 8.
    Lee, E., Chan, C.K., Paatero, P.: Application of positive matrix factorization in source apportionment of particulate pollutants in Hong Kong. Atmos. Environ. 33, 3201–3212 (1999).  https://doi.org/10.1016/S1352-2310(99)00113-2CrossRefGoogle Scholar
  9. 9.
    Yang, L.X., Cheng, S.H., Wang, X.F., et al.: Source identification and health impact of PM2.5 in a heavily polluted urban atmosphere in China. Atmos. Environ. 75, 265–269 (2013).  https://doi.org/10.1016/j.atmosenv.2013.04.058CrossRefGoogle Scholar
  10. 10.
    Belis, C.A., Karagulian, F., Larsen, B.R., et al.: Critical review and meta-analysis of ambient particulate matter source apportionment using receptor models in Europe. Atmos. Environ. 69, 94–108 (2013).  https://doi.org/10.1016/j.atmosenv.2012.11.009CrossRefGoogle Scholar
  11. 11.
    Viana, M., Pandolfi, M., Minguillόn, M.C., et al.: Inter-comparison of receptor models for PM source apportionment: case study in an industrial area. Atmos. Environ. 42, 3820–3832 (2008).  https://doi.org/10.1016/j.atmosenv.2007.12.056CrossRefGoogle Scholar
  12. 12.
    Hopke, P.K., Ito, K., Mar, T., et al.: PM source apportionment and health effects: 1. intercomparison of source apportionment results. J. Expo. Sci. Environ. Epidemiol. 16, 275–286 (2006).  https://doi.org/10.1038/sj.jea.7500458CrossRefGoogle Scholar
  13. 13.
    Contini, D., Belosi, F., Gambaro, A., et al.: Comparison of PM10 concentrations and metal content in three different sites of the Venice Lagoon: an analysis of possible aerosol sources. J. Environ. Sci. 24(11), 1954–1965 (2012).  https://doi.org/10.1016/S1001-0742(11)61027-9CrossRefGoogle Scholar
  14. 14.
    Contini, D., Cesari, D., Donateo, A., et al.: Characterization of PM10 and PM2.5 and their metals content in different typologies of sites in South-Eastern Italy. Atmosphere 5, 435–453 (2014).  https://doi.org/10.3390/atmos5020435
  15. 15.
    Chen, D.S., Cheng, S.Y., Liu, L., et al.: An integrated MM5-CMAQ modeling approach for assessing trans-boundary PM10 contribution to the host city of 2008 Olympic summer games-Beijing. China Atmos. Environ. 41, 1237–1250 (2007).  https://doi.org/10.1016/j.atmosenv.2006.09.057CrossRefGoogle Scholar
  16. 16.
    Streets, D.G., Fu, J.S., Jang, C.J., et al.: Air quality during the 2008 Beijing Olympic games. Atmos. Environ. 41, 480–492 (2007).  https://doi.org/10.1016/j.atmosenv.2006.08.046CrossRefGoogle Scholar
  17. 17.
    Fu, J.S., Streets, D.G., Jang, C.J., et al.: Modeling regional/urban ozone and particulate matter in Beijing, China. J. Air Waste Manag. Assoc. 59, 37–44 (2009).  https://doi.org/10.3155/1047-3289.59.1.37CrossRefGoogle Scholar
  18. 18.
    Wang, L.T., Hao, J.M., He, K.B., et al.: A modeling study of coarse particulate matter pollution in Beijing: regional source contributions and control implications for the 2008 Summer Olympics. J. Air Waste Manag. Assoc. 58, 1057–1069 (2008).  https://doi.org/10.3155/1047-3289.58.8.1057CrossRefGoogle Scholar
  19. 19.
    Xing, J., Zhang, Y., Wang, S.X., et al.: Modeling study on the air quality impacts from emission reductions and a typical meteorological conditions during the 2008 Beijing Olympics. Atmos. Environ. 45, 1786–1798 (2011).  https://doi.org/10.1016/j.atmosenv.2011.01.025CrossRefGoogle Scholar
  20. 20.
    Zhou, Y., Fu, J.S., Zhuang, G.S., et al.: Risk-based prioritization among air pollution control strategies in the Yangtze River delta. China. Environ. Health Perspec. 118(9), 1204–1210 (2010).  https://doi.org/10.1289/ehp.1001991CrossRefGoogle Scholar
  21. 21.
    Meng, C.C., Wang, L.T., Su, J., et al.: Chemical compositions and source apportionment of PM2.5 in Handan City, Hebei Province. Environ. Sci. Technol. 39(2), 57–64 (2016).  https://doi.org/10.3969/j.issn.1003-6504.2016.02.010. (in Chinese)CrossRefGoogle Scholar
  22. 22.
    Wei, Z., Wang, L.T., Chen, M.Z., et al.: The 2013 severe haze over the Southern Hebei, China: PM2.5 composition and source apportionment. Atmos. Pollut. Res. 5, 759–768 (2014).  https://doi.org/10.5094/APR.2014.085CrossRefGoogle Scholar
  23. 23.
    Bove, M.C., Brotto, P., Cassola, F., et al.: An integrated PM2.5 source apportionment study: positive matrix factorisation vs. the chemical transport model CAMx. Atmos. Environ. 94, 274–286 (2014).  https://doi.org/10.1016/j.atmosenv.2014.05.039CrossRefGoogle Scholar
  24. 24.
    Pekney, N.J., Davidson, C.I., Robinson, A., et al.: Major source categories for PM2.5 in Pittsburgh using PMF and UNMIX. Aerosol Sci. Technol. 40, 910–924 (2006).  https://doi.org/10.1080/02786820500380271CrossRefGoogle Scholar
  25. 25.
    Paatero, P.: Least squares formulation of robust non-negative factor analysis. Chemometr. Intell. Lab. Syst. 37, 23–35 (1997).  https://doi.org/10.1016/S0169-7439(96)00044-5CrossRefGoogle Scholar
  26. 26.
    Paatero, P., Tapper, U.: Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values. Environments 5, 111–126 (1994).  https://doi.org/10.1002/env.3170050203CrossRefGoogle Scholar
  27. 27.
    Saba, T., Su, S.: Tracking polychlorinated biphenyls (PCBs) congener patterns in Newark Bay surface sediment using principal component analysis (PCA) and positive matrix factorization (PMF). J. Hazard. Mater. 260, 634–643 (2013).  https://doi.org/10.1016/j.jhazmat.2013.05.046CrossRefGoogle Scholar
  28. 28.
    Baumann, K., Jayanty, R.K.M., Flanagan, J.B.: Fine particulate matter source apportionment for the chemical speciation trends network site at Birmingham, Alabama, using positive matrix factorization. J. Air Waste Manag. Assoc. 58, 27–44 (2008).  https://doi.org/10.3155/1047-3289.58.1.27CrossRefGoogle Scholar
  29. 29.
    Brown, S.G., Frankel, A., Raffuse, S.M.: Source apportionment of fine particulate matter in phoenix AZ, using positive matrix factorization. J. Air Waste Manag. Assoc. 57, 741–752 (2007).  https://doi.org/10.3155/1047-3289.57.6.741CrossRefGoogle Scholar
  30. 30.
    Huang, S., Rahn, K.A., Arimoto, R.: Testing and optimizing two factor-analysis techniques on aerosol at Narragansett. Rhode Island. Atmos. Environ. 33, 2169–2185 (1999).  https://doi.org/10.1016/S1352-2310(98)00324-0CrossRefGoogle Scholar
  31. 31.
    Pekey, H., Pekey, B., Arslanbas, D.: Source apportionment of personal exposure to fine particulate matter and volatile organic compounds using positive matrix factorization. Water Air Soil Pollut. 224, 1403 (2013).  https://doi.org/10.1007/s11270-012-1403-2CrossRefGoogle Scholar
  32. 32.
    U.S. EPA (U.S. Environmental Protection Agency): EPA positive matrix factorization (PMF) 3.0 fundamentals & user Guide. U.S. EPA, Research Triangle Park, NC, USA (2008)Google Scholar
  33. 33.
    Zhang, J.G., Wang, Y.S., Wang, S., et al.: Source apportionment of non-methane hydrocarbon in Beijing using positive matrix factorization. Environ. Sci. Technol. 32(5), 35–39 (2009). (in Chinese)Google Scholar
  34. 34.
    Viana, M., Chi, X., Maenhaut, W., et al.: Influence of sampling artefacts on measured PM, OC, and EC Levels in carbonaceous aerosols in an urban area. Aerosol Sci. Technol. 40(2), 107–117 (2007).  https://doi.org/10.1080/02786820500484388CrossRefGoogle Scholar
  35. 35.
    Yu, L.D., Wang, G.F., Zhang, R.J. et al.: Characterization and source apportionment of PM2.5 in an urban environment in Beijing. Aerosol Air Qual. Res. 13, 574–583 (2013).  https://doi.org/10.4209/aaqr.2012.07.0192
  36. 36.
    Brown, S.G., Eberly, S., Paatero, P., et al.: Methods for estimating uncertainty in PMF solutions: examples with ambient air and water quality data and guidance on reporting PMF results. Sci. Total Environ. 518–519, 626–635 (2015).  https://doi.org/10.1016/j.scitotenv.2015.01.022CrossRefGoogle Scholar
  37. 37.
    U.S. EPA: EPA positive matrix factorization (PMF) 5.0 fundamentals and user guide (2014)Google Scholar
  38. 38.
    NCAR: PSU/NCAR mesoscale modeling system tutorial class notes and user’s guide: MM5 modeling system version 3. National Center for Atmospheric Research, USA (2003)Google Scholar
  39. 39.
    Dunker, A.M., Morris, R.E., Pollack, A.K., et al.: Photochemical modeling of the impact of fuels and vehicles on urban ozone using auto oil program data. Environ. Sci. Technol. 30, 787–801 (1996).  https://doi.org/10.1021/es950175mCrossRefGoogle Scholar
  40. 40.
    Wang, L.T., Wei, Z., Wei, W., et al.: Source apportionment of PM2.5 in top polluted cities in Hebei, China using the CMAQ model. Atmos. Environ. 122, 723–736 (2015).  https://doi.org/10.1016/j.atmosenv.2015.10.041CrossRefGoogle Scholar
  41. 41.
    HEBEU: Report on PM2.5 source apportionment in Handan. HEBEU, Handan, Hebei, China (2015)Google Scholar
  42. 42.
    Kain, J.S., Fritsch, J.M.: Convective parameterization for mesoscale models: the Kain-Fritsch scheme. In: Emanuel, K.A., Raymond, D.J. (eds.) The Representation of Cumulus Convection in Numerical Models, p. 246. American Meteorological Society (1993).  https://doi.org/10.1007/978-1-935704-13-3_16
  43. 43.
    Zhang, D.L., Anthes, R.A.: A high-resolution model of the planetary boundary layer-sensitive tests and comparisons with SESAME-79 data. J. Appl. Meteorology 21, 1594–1609 (1982).  https://doi.org/10.1175/1520-0450(1982)021<1594:ahrmot>2.0.co;2
  44. 44.
    Reisner, J., Rasmussen, R.J., Bruintjes, R.T.: Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Q. J. Royal Meteorological Soc. 124B, 1071–1107 (1998).  https://doi.org/10.1002/qj.49712454804CrossRefGoogle Scholar
  45. 45.
    Dudhia, J.A.: A non-hydrostatic version of the Penn State/NCAR mesoscale model: validation tests and simulation of an Atlantic cyclone and cold front. Monthly Weather Rev. 121, 1493–1513 (1993).  https://doi.org/10.1175/1520-0493(1993)121<1493:anvotp>2.0.co;2
  46. 46.
    Blackadar, A.K.: Modeling the Nocturnal Boundary Layer. In: Proceedings of the Third Symposium on Atmospheric Turbulence, Diffusion and Air Quality, American Meteorological Society, Boston, MA, pp. 46–49 (1976)Google Scholar
  47. 47.
    Deardorff, J.W.: Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation. J. Geophys. Res. 83, 1889–1903 (1978).  https://doi.org/10.1029/JC083iC04p01889CrossRefGoogle Scholar
  48. 48.
    Carter, W.P.L.: A detailed mechanism for the gas-phase atmospheric reactions of organic compounds. Atmos. Environ. 24, 481–518 (1990).  https://doi.org/10.1016/0960-1686(90)90005-8CrossRefGoogle Scholar
  49. 49.
    Carter, W.P.L.: Implementation of the SAPRC-99 chemical mechanism into the models-3 framework. Report to the U.S. EPA, prepared by Cater, W.P.L., Statewide Air Pollution Research Center, University of California, Riverside, CA (2000)Google Scholar
  50. 50.
    Binkowski, F.S., Shankar, U.: The regional particulate model. 1. Model description and preliminary results. J. Geophys. Res. 100, 26191–26209 (1995).  https://doi.org/10.1029/95JD02093CrossRefGoogle Scholar
  51. 51.
    Chang, J.S., Brost, R.A., Isaksen, I.S.A., et. al.: A three-dimensional acid deposition model: physical concepts and formulation. J. Geophys. Res. 92, 14681–14700 (1987).  https://doi.org/10.1029/JD092iD12p14681
  52. 52.
    Walcek, C.J., Taylor, G.R.: A theoretical method for computing vertical distributions of acidity and sulfate production within cumulus clouds. J. Atmos. Sci. 43, 339–355 (1986).  https://doi.org/10.1175/1520-0469(1986)043<0339:atmfcv>2.0.co;2
  53. 53.
    MEP: Guidance on the report of source apportionment of atmospheric aerosols. MEP, Beijing, China (2015)Google Scholar
  54. 54.
    Cao, G.L., Zhang, X.Y., Gong, S.L., et al.: Emission inventories of primary particles and pollutant gases for China. Chin. Sci. Bull. 56 (2011).  https://doi.org/10.1007/s11434-011-4373-7. (in Chinese)
  55. 55.
    Guan, D.B., Liu, Z.: The truth of haze: PM2.5 pollution source analysis and reduction strategy research. China Environmental Press, Beijing, China (2014)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Zhe Wei
    • 1
  • Litao Wang
    • 1
  • Liquan Hou
    • 1
  • Hongmei Zhang
    • 2
  • Liang Yue
    • 3
  • Wei Wei
    • 4
  • Simeng Ma
    • 1
  • Chengyu Zhang
    • 1
  • Xiao Ma
    • 1
  1. 1.Department of Environmental Engineering, School of City ConstructionHebei University of EngineeringHandanChina
  2. 2.School of Economics and ManagementHebei University of EngineeringHandanChina
  3. 3.Environmental Monitoring Center of HandanHandan Environmental Protection BureauHandanChina
  4. 4.Department of Environmental ScienceBeijing University of TechnologyBeijingChina

Personalised recommendations