Advertisement

The Bubble Challenge for High-Speed Photography

  • Werner LauterbornEmail author
  • Thomas Kurz
Chapter
  • 1.1k Downloads

Abstract

Bubbles in liquids show a rich set of phenomena ranging from harmless gaseous bubbles rising in a liquid to almost empty cavitation bubbles responsible for the destruction of ship propellers. A special property of bubbles are the extremely high-speed liquid flows they enable by providing almost empty space for acceleration. Thus bubble dynamics presents a challenge for proper investigation, in particular high-speed liquid jet formation and shock wave radiation. One tool developed to study fast dynamics is high-speed photography with suitable cameras. The gradual approach to resolve bubble dynamics, in particular bubble collapse, via ever too slow cameras up to the state of the art of some hundred million frames per second is reviewed. Some ideas on the numerical extension of camera speed limits are put forward. Moreover, the first historic steps into getting three-dimensional images recorded via high-speed holography with up to some hundred thousand holograms per second are reported.

Supplementary material

421713_1_En_2_MOESM1_ESM.avi (2.2 mb)
Stereoscopic view of bubble motion in an ultrasonic field. Viewing angle between the two cameras = 35.4°, ultrasonic frequency = 22.8 kHz, pressure amplitude = 132 kPa, frame size: 1 cm × 1 cm per camera, frame rate: 2250 fps, exposure time: 440 μs (AVI 2302 kb)
421713_1_En_2_MOESM2_ESM.avi (3.5 mb)
Tracking of individual bubbles in Video 2.1. Different bubbles are marked by different colors. The data serve for determining their 3D positions. The data also serve for determining velocities of the bubbles (AVI 3563 kb)

A 3D plot of the bubble positions from Video 2.1 according to the identification in Video 2.2 and their pathways. The rotation is for better perception of the overall 3D bubble arrangement. It is inhomogeneous and forms a network of branches (called streamers) (AVI 1003 kb)

References

  1. 1.
    H. Kuttruff, Über den Zusammenhang zwischen der Sonolumineszenz und der Schwingungskavitation in Flüssigkeiten (On the connection between sonoluminescence and acoustic cavitation). Acustica 12, 230–254 (1962)Google Scholar
  2. 2.
    D.F. Gaitan, L.A. Crum, C.C. Church, R.A. Roy, Sonoluminescnece and bubble dynamics for a single, stable cavitation bubble. J. Acoust. Soc. Am. 91, 3166–3183 (1992)CrossRefGoogle Scholar
  3. 3.
    W. Lauterborn, T. Kurz, Coherent Optics, 2nd edn. (Springer, Berlin, 2003), pp. 234–236CrossRefGoogle Scholar
  4. 4.
    W. Lauterborn, Kavitation durch Laserlicht (Laser-induced cavitation). Acustica 31, 51–78 (1974)Google Scholar
  5. 5.
    C.W. Visser, P.E. Frommhold, S. Wildeman, R. Mettin, D. Lohse, C. Sun, Dynamics of high-speed micro-drop impact: Numerical simulations and experiments at frame-to-frame times below 100 ns. Soft Matter 11, 1708–1722 (2015)CrossRefGoogle Scholar
  6. 6.
    J. Noack, A. Vogel, Single-shot spatially resolved characterization of laser-induced shock waves in water. Appl. Opt. 37, 4092–4099 (1998)CrossRefGoogle Scholar
  7. 7.
    W. Güth, Kinematographische Aufnahmen von Wasserdampfblasen (Cinematographic recording of water vapour bubbles). Acustica 4, 445–455 (1954)Google Scholar
  8. 8.
    W. Lauterborn, H. Bolle, Experimental investigations of cavitation-bubble collapse in the neighbourhood of a solid boundary. J. Fluid Mech. 72, 391–399 (1975)CrossRefGoogle Scholar
  9. 9.
    Y. Tomita, A. Shima, Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse. J. Fluid Mech. 169, 535–564 (1986)CrossRefGoogle Scholar
  10. 10.
    A. Philipp, W. Lauterborn, Cavitation erosion by single laser-produced bubbles. J. Fluid Mech. 361, 75–116 (1998)CrossRefzbMATHGoogle Scholar
  11. 11.
    W. Lauterborn, W. Hentschel, Cavitation bubble dynamics studied by high-speed photography and holography: Part one. Ultrasonics 23, 260–268 (1985)CrossRefGoogle Scholar
  12. 12.
    W. Lauterborn, R. Timm, Bubble collapse studies at a million frames per second, in Cavitation and Inhomogeneities in Underwater Acoustics, ed. by W. Lauterborn (Springer, Berlin, 1980), pp. 42–46Google Scholar
  13. 13.
    A. Vogel, W. Lauterborn, R. Timm, Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary. J. Fluid Mech. 206, 299–338 (1989)CrossRefGoogle Scholar
  14. 14.
    C.-D. Ohl, A. Philipp, W. Lauterborn, Cavitation bubble collapse studied at 20 million frames/s. Ann. Physik. 4, 26–34 (1995)CrossRefGoogle Scholar
  15. 15.
    O. Lindau, W. Lauterborn, Cinematographic observation of the collapse and rebound of a laser-produced cavitation bubble near a wall. J. Fluid Mech. 479, 327–348 (2003)CrossRefzbMATHGoogle Scholar
  16. 16.
    R.P. Tong, W.P. Schiffers, S.J. Shaw, J.R. Blake, D.C. Emmony, The role of ‘splashing’ in the collapse of a laser-generated cavity near a rigid boundary. J. Fluid Mech. 380, 339–361 (1999)CrossRefzbMATHGoogle Scholar
  17. 17.
    M.S. Plesset, R.B. Chapman, Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary. J. Fluid Mech. 47, 283–290 (1971)CrossRefGoogle Scholar
  18. 18.
    B. Han, K. Köhler, K. Jungnickel, R. Mettin, W. Lauterborn, A. Vogel, Dynamics of laser-induced bubble pairs. J. Fluid Mech. 771, 706–742 (2015)CrossRefGoogle Scholar
  19. 19.
    M. Koch, C. Lechner, F. Reuter, K. Köhler, R. Mettin, W. Lauterborn, Numerical modeling of laser generated cavitation bubbles with the finite volume and volume of fluid method, using OpenFOAM. Comp. Fluids 126, 71–90 (2016)MathSciNetCrossRefGoogle Scholar
  20. 20.
    J. Appel, P. Koch, R. Mettin, D. Krefting, W. Lauterborn, Stereoscopic high-speed recording of bubble filaments. Ultrason. Sonochem. 11, 39–42 (2004)CrossRefGoogle Scholar
  21. 21.
    W. Lauterborn, K. Hinsch, F. Bader, Holography of bubbles in water as a method to study cavitation bubble dynamics. Acustica 26, 170–171 (1972)Google Scholar
  22. 22.
    K.J. Ebeling, Hochfrequenzholografie mit dem Rubinlaser (High-speed holography with the ruby laser), Optik 48, 383–397, 481–490 (1977)Google Scholar
  23. 23.
    W. Lauterborn, K.J. Ebeling, High-speed holography of laser-induced breakdown in liquids. Appl. Phys. Lett. 31, 663–664 (1977)CrossRefGoogle Scholar
  24. 24.
    W. Lauterborn, A. Judt, E. Schmitz, High-speed off-axis holographic cinematography with a copper-vapor-pumped dye laser. Opt. Lett. 18, 4–6 (1993)CrossRefGoogle Scholar
  25. 25.
    W. Hentschel, Hochfrequenzholografie mit dem Argon-Ionen Laser (High-speed holocinematography with the argon ion laser). Optik 68, 283–310 (1984)Google Scholar
  26. 26.
    M. Novaro, Camera holographique ultra-rapide (Ultra high-speed holographic camera), C. R. Acad. Sci. Paris, B. 273, 941–943 (1971)Google Scholar
  27. 27.
    W. Hentschel, W. Lauterborn, New speed record in long series holographic cinematography. Appl. Opt. 23, 3263–3265 (1984)CrossRefGoogle Scholar
  28. 28.
    W. Hentschel, W. Lauterborn, High speed holographic movie camera. Opt. Eng. 24, 687–691 (1985)CrossRefGoogle Scholar
  29. 29.
    W. Lauterborn, E. Cramer, Subharmonic route to chaos observed in acoustics. Phys. Rev. Lett. 47, 1445–1448 (1981)CrossRefGoogle Scholar
  30. 30.
    W. Lauterborn, A. Koch, Holographic observation of period-doubled and chaotic bubble oscillations in acoustic cavitation. Phys. Rev. A. 35, 1974–1976 (1987)CrossRefGoogle Scholar
  31. 31.
    W. Lauterborn, J. Holzfuss, Acoustic chaos. Int. J. Bif. Chaos 1, 13–26 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    W. Lauterborn, W. Hentschel, Cavitation bubble dynamics studied by high-speed photography and holography: Part two. Ultrasonics 24, 59–65 (1986)CrossRefGoogle Scholar
  33. 33.
    W. Lauterborn and W. Hentschel, Holografische Hochgeschwindigkeitskinematografie (Holographic high-speed cinematography), in Praxis der Holografie (Practical holography), ed. by H. Marwitz et al. (Expert Verlag, Ehningen, 1989), pp. 354–370, 474–475Google Scholar
  34. 34.
    W. Lauterborn, T. Kurz, R. Mettin, C.D. Ohl, Experimental and theoretical bubble dynamics. Adv. Chem. Phys. 110, 295–380 (1999)Google Scholar
  35. 35.
    W. Lauterborn and T. Kurz, Physics of bubble oscillations, Rep. Prog. Phys. 106501 (88 pp) (2010)Google Scholar
  36. 36.
    W. Lauterborn, Optische Kavitation (Optic cavitation). Physikalische Blätter 32, 553–563 (1976)CrossRefGoogle Scholar
  37. 37.
    W. Lauterborn, Cavitation and coherent optics, in Cavitation and Inhomogeneities in Underwater Acoustics, ed. by W. Lauterborn (Springer, Berlin, 1980), pp. 3–12Google Scholar
  38. 38.
    W. Hentschel, W. Lauterborn, Holographic generation of multi-bubble systems, in Cavitation and Inhomogeneities in Underwater Acoustics, ed. by W. Lauterborn (Springer, Berlin, 1980), pp. 47–53Google Scholar
  39. 39.
    K.Y. Lim, P.A. Quinto-Su, E. Klaseboer, B.C. Khoo, V. Venugopalan, C.-D. Ohl, Nonspherical laser-induced cavitation bubbles, Phys. Rev. E. 81, 016308 (9 pp) (2010)Google Scholar
  40. 40.
    U. Schnars, W. Jüptner, Direct recording of holograms by a CCD target and numerical reconstruction. Appl. Opt. 33, 179–181 (1994)CrossRefGoogle Scholar
  41. 41.
    J. Sheng, E. Malkiel, J. Katz, Digital holographic microscope for measuring three-dimensional particle distributions and motions. Appl. Opt. 45, 3893–3901 (2006)CrossRefGoogle Scholar
  42. 42.
    G. Haussmann, W. Lauterborn, Determination of size and position of fast moving gas bubbles in liquids by digital 3-D image processing of hologram reconstructions. Appl. Opt. 19, 3529–3535 (1980)CrossRefGoogle Scholar
  43. 43.
    E. Malkiel, J.A. Abras, J. Katz, Automated scanning and measurement of particle distributions within a holographic reconstructed volume. Meas. Sci. Technol. 15, 601–612 (2004)CrossRefGoogle Scholar
  44. 44.
    U. Schnars, W. Jüptner, Digital recording and numerical reconstruction of holograms. Meas. Sci. Technol. 13, R85–R101 (2002)CrossRefGoogle Scholar
  45. 45.
    J. Katz, J. Sheng, Applications of holography in fluid mechanics and particle dynamics. Annu. Rev. Fluid Mech. 42, 531–555 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Drittes Physikalisches InstitutGeorg-August-Universität GöttingenGöttingenGermany

Personalised recommendations