Advertisement

Saliva-Based Point-of-Care in Oral Cancer Detection: Current Trend and Future Opportunities

  • Prashanth PantaEmail author
  • David T. W. Wong
Chapter

Abstract

Development of point-of-care (POC) for saliva-based, noninvasive detection of OSCC is an active area of research. Portable and easy-to-use biomedical devices and advanced electrochemical platforms (OFNASET) or simple paper-strip chromatography (e.g., OncAlert®), based on a single or a panel of salivary biomarkers, are already available for clinical use. In this chapter, the emerging core technologies and approaches assisting early POC detection are discussed. Knowledge from closely related fields like nanotechnology is also summarized to provide insight on possible future approaches that can be tailored for oral cancer detection. POC for oral cancer can be designed to work on a potential biomarker candidate (validated in multi-cohort and multiethnic studies) among the wide range of 100 signature analytes from proteins to RNA, cytomorphometry of exfoliated cells in saliva (analogous to circulating tumor cells in plasma), or through high-throughput screening of salivary exosomes for potential signatures. Surface-enhanced Raman scattering (SERS) was also used as a saliva assay previously, and such attempts will evolve significantly if saliva samples are mucin-free. ELISA is a common method for low-cost protein detection, with great POC potential. Its performance can be optimized through bead and nanoparticle technology. Sophisticated Luminex multi-analyte profiling (xMAP) technology and metal-linked immunosorbent assay (MeLISA), based on ELISA and biocatalytic ability of enzymes, were already reported with high sensitivity and specificity, which can be extrapolated to saliva samples. Some technologies have also assisted detection of mutations, such as “electric field-induced release and measurement” (EFIRM) recently deployed for identification of EGFR mutations through saliva samples. In this chapter, we have narrated the current trend and future opportunities for POC development in saliva-based oral cancer detection.

Keywords

Oral cancer Noninvasive diagnosis Liquid biopsy Saliva Point of care Lab on chip 

Notes

Acknowledgment

Support from Ronnie James Dio Stand Up and Shout Cancer Research Fund.

References

  1. 1.
    Wong DT. Towards a simple, saliva-based test for the detection of oral cancer 'oral fluid (saliva), which is the mirror of the body, is a perfect medium to be explored for health and disease surveillance'. Expert Rev Mol Diagn. 2006;6:267–72.CrossRefPubMedGoogle Scholar
  2. 2.
    Kaczor-Urbanowicz KE, Carreras-Presas CM, Kaczor T, Michael T, Wei F, Garcia-Godoy F, Wong DTW. Emerging technologies for salivaomics in cancer detection. J Cell Mol Med. 2017;21:640–7.CrossRefPubMedGoogle Scholar
  3. 3.
    Daniel Malamud, Isaac R. Rodriguez-Chavez. Saliva as a Diagnostic fluid. Dent Clin N Am 2011; 55: 159–178.Google Scholar
  4. 4.
    Lee Y-H, Saliva DTW. An emerging biofluid for early detection of diseases. Am J Dent. 2009;22:241–8.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Ziober BL, Mauk MG, Falls EM, Chen Z, Ziober AF, Bau HH. Lab-on-a-chip for oral cancer screening and diagnosis. Head Neck. 2008;30:111–21.CrossRefPubMedGoogle Scholar
  6. 6.
    Malhotra R, Patel V, Chikkaveeraiah BV, Munge BS, Cheong SC, Zain RB, et al. Ultrasensitive detection of Cancer biomarkers in the clinic using a nanostructured microfluidic Array. Anal Chem. 2012;84:6249–55.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Munge BS, Coffey AL, Doucette JM, Somba BK, Malhotra R, Patel V, et al. Nanostructured immunosensor for attomolar detection of cancer biomarker interleukin-8 using massively labeled superparamagnetic particles. Angew Chem Int Ed Engl. 2011;50:7915–8.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Kumar S, Kumar S, Ali MA, Anand P, Agrawal VV, John R, Maji S, Malhotra BD. Microfluidic-integrated biosensors: prospects for point-of-care diagnostics. Biotechnol J. 2013;8:1267–79.CrossRefPubMedGoogle Scholar
  9. 9.
    Zhang JZ, Nagrath S. Microfluidics and Cancer: are we there yet? Biomed Microdevices. 2013;15:595–609.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ying L, Wang Q. Microfluidic chip-based technologies: emerging platforms for cancer diagnosis. BMC Biotechnol. 2013;13:76.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Chen C, Skog J, Hsu CH, Lessard RT, Balaj L, Wurdinger T. Microfluidic isolation and transcriptome analysis of serum microvesicles. Lab Chip. 2010;10:505–11.CrossRefPubMedGoogle Scholar
  12. 12.
    Wang H, Liu W, Zhang X, Xu X, Kang Z, Li S, et al. Toward point-of-care testing for JAK2 V617F mutation on a microchip. J Chromatogr A. 2015;1410:28–34.CrossRefPubMedGoogle Scholar
  13. 13.
    Hayama FH, Motta AC, Silva Ade P, Migliari DA. Liquid-based preparations versus conventional cytology: specimen adequacy and diagnostic agreement in oral lesions. Med Oral Patol Oral Cir Bucal. 2005;10:115–22.PubMedGoogle Scholar
  14. 14.
    Navone R, Burlo P, Pich A, Pentenero M, Broccoletti R, Marsico A, et al. The impact of liquid-based oral cytology on the diagnosis of oral squamous dysplasia and carcinoma. Cytopathology. 2007;18:356–60.CrossRefPubMedGoogle Scholar
  15. 15.
    Navone R. Cytology of the oral cavity: a re-evaluation. Pathologica. 2009;101:6–8.PubMedGoogle Scholar
  16. 16.
    McDevitt J, Weigum SE, Floriano PN, Christodoulides N, et al. A new bio-nanochip sensor aids oral cancer detection. SPIE Newsroom. 2011;003547Google Scholar
  17. 17.
    Weigum SE, Floriano PN, Redding SW, Yeh CK, Westbrook SD, McGuff HS, et al. Nano-bio-chip sensor platform for examination of oral exfoliative cytology. Cancer Prev Res (Phila). 2010;3:518–28.CrossRefGoogle Scholar
  18. 18.
    Weigum SE, Floriano PN, Christodoulides N, McDevitt JT. Cell-based sensor for analysis of EGFR biomarker expression in oral cancer. Lab Chip. 2007;7:995–1003. CrossRefPubMedGoogle Scholar
  19. 19.
    Abram TJ, Floriano PN, Christodoulides N, James R, Kerr AR, Thornhill MH, et al. ‘Cytology-on-a-chip’ based sensors for monitoring of potentially malignant oral lesions. Oral Oncol. 2016; 60: 103-11.Google Scholar
  20. 20.
    Whitesides GM, Wilding P. Lab on a stamp: paper-based diagnostic tools. Interview by Molly Webster and Vikram Sheel Kumar Clin Chem 2012; 58:956–8.Google Scholar
  21. 21.
    Yetisen AK, Akram MS, Lowe CR. Paper-based microfluidic point-of-care diagnostic devices. Lab Chip. 2013;13:2210–51.CrossRefPubMedGoogle Scholar
  22. 22.
    Alicia D. Powers, Sean P. Palecek, Ph. D. Protein analytical assays for diagnosing, monitoring, and choosing treatment for cancer patients. J Healthc Eng. 2012;3:503–34.CrossRefGoogle Scholar
  23. 23.
    Murdock RC, Shen L, Griffin DK, Kelley-Loughnane N, Papautsky I, Hagen JA. Optimization of a paper-based ELISA for a human performance biomarker. Anal Chem. 2013;85:11634–42.CrossRefPubMedGoogle Scholar
  24. 24.
    Tan W, Sabet L, Li Y, Yu T, Klokkevold PR, Wong DT, et al. Optical protein sensor for detecting cancer markers in saliva. Biosens Bioelectron. 2008;24:266–71.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Sanjay ST, Dou M, Sun J, Li X. A paper/polymer hybrid microfluidic microplate for rapid quantitative detection of multiple disease biomarkers. Sci Rep. 2016;6:30474.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Markopoulos AK, Michailidou EZ, Tzimagiorgis G. Salivary markers for oral Cancer detection. Open Dent J. 2010;4:172–8.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Venugopal A, Uma Maheswari TN. Expression of matrix metalloproteinase-9 in oral potentially malignant disorders: a systematic review. J Oral Maxillofac Pathol. 2016;20:474–9.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Arellano-Garcia ME, Hu S, Wang J, Henson B, Zhou H, Chia D, et al. Multiplexed immunobead-based assay for detection of oral cancer protein biomarkers in saliva. Oral Dis. 2008;14:705–12.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Dincer C, Bruch R, Kling A, Dittrich PS, Urban GA. Multiplexed Point-of-Care Testing - xPOCT. Trends Biotechnol. 2017;35:728–42.Google Scholar
  30. 30.
    Baker HN, Murphy R, Lopez E, Garcia C. Conversion of a Capture ELISA to a Luminex xMAP Assay using a Multiplex Antibody Screening Method. J Vis Exp. 2012; (65): 4084. (refervedio).Google Scholar
  31. 31.
    Yu R-J, Ma W, Liu X-Y, Jin H-Y, Han H-X, Wang H-Y, Long Y-T, et al. Metal-linked Immunosorbent Assay (MeLISA): the enzyme-free alternative to ELISA for biomarker detection in serum. Theranostics. 2016;6:1732–9.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Malhotra R, Patel V, Vaqué JP, Silvio Gutkind J, Rusling JF. Ultrasensitive electrochemical Immunosensor for oral Cancer biomarker IL-6 using carbon nanotube forest electrodes and multilabel amplification. Anal Chem. 2010;82:3118–23.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Hart RW, Mauk MG, Liu C, Qiu X, Thompson JA, Chen D, Malamud D, Abrams WR, Bau HH. Point-of-careoral-baseddiagnostics. Oral Dis. 2011;17:745–52.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Herr AE, Hatch AV, Throckmorton DJ, Tran HM, Brennan JS, Giannobile WV, Singh AK. Microfluidic immunoassays as rapid saliva-based clinical diagnostics. Proc Natl Acad Sci U S A. 2007;104:5268–73.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Oliveira-Rodríguez M, López-Cobo S, Reyburn HT, Costa-García A, López-Martín S, Yáñez-Mó M, et al. Development of a rapid lateral flow immunoassay test for detection of exosomes previously enriched from cell culture medium and body fluids. J Extracell Vesicles. 2016;5:31803.CrossRefPubMedGoogle Scholar
  36. 36.
    Segal A, Wong DT. Salivary diagnostics: enhancing disease detection and making medicine better. Eur J Dent Educ. 2008;12:22–9.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Wei F, Patel P, Liao W, Chaudhry K, Zhang L, Arellano-Garcia M, et al. Electrochemical sensor for multiplex biomarkers detection. Clin Cancer Res. 2009;15:4446–52.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Fang WE, Wong DT. Point-of-care platforms for salivary diagnostics. Chin J Dent Res. 2012;15:7–15.Google Scholar
  39. 39.
    Wei F, Lin CC, Joon A, Feng Z, Troche G, Lira ME, et al. Noninvasive saliva-based EGFR gene mutation detection in patients with lung cancer. Am J Respir Crit Care Med. 2014;190:1117–26.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Pu D, Liang H, Wei F, Akin D, Feng Z, Yan Q, et al. Evaluation of a novel saliva-based epidermal growth factor receptor mutation detection for lung cancer: A pilot study. Thorac Cancer. 2016; 7: 428-36.Google Scholar
  41. 41.
    Aro K, Wei F, Wong DT, Michael T. Saliva liquid biopsy for point-of-care applications. Front Public Health. 2017;5:77.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Yang J, Wei F, Schafer C, Wong DT. Detection of tumor cell-specific mRNA and protein in exosome-like microvesicles from blood and saliva. PLoS One. 2014;9:e110641.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Tu M, Wei F, Yang J, Wong D. Detection of exosomal biomarker by electric field-induced release and measurement (EFIRM). J Vis Exp. 2015;95:52439.Google Scholar
  44. 44.
    Tan Y, Wei X, Zhao M, Qiu B, Guo L, Lin Z, Yang HH. Ultraselective homogeneous electrochemical biosensor for DNA species related to oral cancer based on nicking endonuclease assisted target recycling amplification. Anal Chem. 2015;87:9204–8.CrossRefPubMedGoogle Scholar
  45. 45.
    Kim J, Imani S, de Araujo WR, Warchall J, Valdés-Ramírez G, Paixão TRLC, Mercier PP, Wang J. Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics. Biosens Bioelectron. 2015;74:1061–8.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Kim J, Valdés-Ramírez G, Bandodkar AJ, Jia W, Martinez AG, Ramírez J et al. Non-invasive mouthguard biosensor for continuous salivary monitoring of metabolites. Analyst. 2014;139:1632–6.Google Scholar
  47. 47.
    Liang YH, Chang CC, Chen CC, Chu-Su Y, Lin CW. Development of an au/ZnO thin film surface plasmon resonance-based biosensor immunoassay for the detection of carbohydrate antigen 15-3 in human saliva. Clin Biochem. 2012;45:1689–93.CrossRefPubMedGoogle Scholar
  48. 48.
    Munge BS, Krause CE, Malhotra R, Patel V, Silvio Gutkind J, Rusling JF. Electrochemical Immunosensors for Interleukin-6.Comparison of carbon nanotube Forest and gold nanoparticle platforms. Electrochem Commun. 2009;11:1009–12.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Zhang Y, Chen R, Xu L, Ning Y, Xie S, Zhang GJ. Silicon nanowire biosensor for highly sensitive and multiplexed detection of oral squamous cell carcinoma biomarkers in saliva. Anal Sci. 2015;31:73–8.CrossRefPubMedGoogle Scholar
  50. 50.
    Kwon SM, Kang GB, Kim YT, Kim YH, Ju BK. In-situ detection of C-reactive protein using silicon nanowire field effect transistor. JNanosci Nanotechnol. 2011;11:1511–4.CrossRefGoogle Scholar
  51. 51.
    Wang HB, Wu S, Chu X, Yu RQ. A sensitive fluorescence strategy for telomerase detection in cancer cells based on T7 exonuclease-assisted target recycling amplification. Chem Commun (Camb). 2012;48:5916–8.CrossRefGoogle Scholar
  52. 52.
    Liu X, Li W, Hou T, Dong S, Yu G, Li F. Homogeneous electrochemical strategy for human telomerase activity assay at single-cell level based on T7 exonuclease-aided target recycling amplification. Anal Chem. 2015;87:4030–6.CrossRefPubMedGoogle Scholar
  53. 53.
    Hayakawa M, Kodama M, Sato S, Tomoeda-Mori K, Haraguchi K, Habu M, et al. Electrochemical telomeraseassay for screening for oral cancer. Br J Oral Maxillofac Surg. 2016; 54:301-5.Google Scholar
  54. 54.
    Cai W, Gao T, Hong H, Sun J. Applications of gold nanoparticles in cancer nanotechnology. Nanotechnol Sci Appl. 2008;1:17–32.Google Scholar
  55. 55.
    Tiwari PM, Vig K, Dennis VA, Singh SR. Functionalized gold nanoparticles and their biomedical applications. Nanomaterials (Basel). 2011;1:31–63.CrossRefGoogle Scholar
  56. 56.
    Huang X, O'Connor R, Kwizera EA. Gold nanoparticle based platforms for circulating Cancer marker detection. Nano. 2017;1:80–102.Google Scholar
  57. 57.
    Kah JC, Kho KW, Lee CG, James C, Sheppard R, Shen ZX et al. Early diagnosis of oral cancer based on the surface plasmon resonance of gold nanoparticles. Int J Nanomedicine 2007; 2: 785–798.Google Scholar
  58. 58.
    Wang X, Qian X, Beitler JJ, Chen ZG, Khuri FR, Lewis MM et al. Detection of circulating tumor cells in human peripheral blood using surface-enhanced Raman scattering nanoparticles. Cancer Res. 2011; 71: 1526–1532.Google Scholar
  59. 59.
    Chikkaveeraiah BV, Mani V, Patel V, Gutkind JS, Rusling JF. Microfluidic electrochemical immunoarray for ultrasensitive detection of two cancer biomarker proteins in serum. Biosens Bioelectron. 2011;26:4477–83.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Singh SP, Deshmukh A, Chaturvedi P, Murali KC. In vivo Raman spectroscopic identification of premalignant lesions in oral buccal mucosa. J Biomed Opt. 2012;17:105002.PubMedGoogle Scholar
  61. 61.
    Xue L, Li Y, Cai Q, Sun P, Luo X, Yan B. Ramanspectral characteristics of oralsquamous cell carcinoma, epithelial dysplasia and normal mucosa. Zhonghua Kou Qiang Yi Xue Za Zhi. 2015;50:18–22.PubMedGoogle Scholar
  62. 62.
    Li XZ, Bai J, Lin J, et al. Serum fluorescence and Raman spectra for diagnosis of cancer. Proc SPIE. 2001;4432:124–30.CrossRefGoogle Scholar
  63. 63.
    Sahu A, Sawant S, Mamgain H, Krishna CM. Raman spectroscopy of serum: an exploratory study for detection of oral cancers. Analyst. 2013;138:4161–74.CrossRefPubMedGoogle Scholar
  64. 64.
    Singh SP, Sahu A, Deshmukh A, Chaturvedi P, Krishna CM. In vivo Raman spectroscopy of oral buccal mucosa: a study on malignancy associated changes (MAC)/cancer field effects (CFE). Analyst. 2013;138:4175–82.CrossRefPubMedGoogle Scholar
  65. 65.
    Tan Y, Yan B, Xue L, Li Y, Luo X, Ji P. Surface-enhanced Raman spectroscopy of blood serum based on gold nanoparticles for the diagnosis of the oralsquamous cell carcinoma. Lipids Health Dis. 2017;16:73.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Yan B, Li B, Wen Z, Luo X, Xue L, Li L. Label-free blood serum detection by using surface-enhanced Raman spectroscopy and support vector machine for the preoperative diagnosis of parotid gland tumors. BMC Cancer. 2015;15:650.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Tu Q, Chang C. Diagnostic applications of Raman spectroscopy. Nanomedicine. 2012;8:545–58.CrossRefPubMedGoogle Scholar
  68. 68.
    Vendrell M, Maiti KK, Dhaliwal K, Chang YT. Surface-enhanced Raman scattering in cancer detection and imaging. Trends Biotechnol. 2013;31:249–57.CrossRefPubMedGoogle Scholar
  69. 69.
    Nolan JP, Duggan E, Liu E, Condello D, Dave I, Stoner SA. Single cell analysis using surface enhanced Raman scattering (SERS) tags. Methods. 2012;57:272–9.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Qian X, Peng XH, Ansari DO, Yin-Goen Q, Chen GZ, Shin DM, et al. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat Biotechnol. 2008;26:83–90.CrossRefGoogle Scholar
  71. 71.
    Owens P, Phillipson N, Perumal J, O'Connor GM, Olivo M. Sensing of p53 and EGFR biomarkers using high efficiency SERS substrates. Biosensors (Basel). 2015;5:664–77.CrossRefGoogle Scholar
  72. 72.
    Lin D, Pan J, Huang H, Chen G, Qiu S, Shi H, et al. Label-free blood plasma test based on surface-enhanced Raman scattering for tumor stages detection in nasopharyngeal cancer. Sci Rep. 2014; 4:4751.Google Scholar
  73. 73.
    Feng S, Chen R, Lin J, Pan J, Chen G, Li Y, et al. Nasopharyngeal cancer detection based on blood plasma surface-enhanced Raman spectroscopy and multivariate analysis. Biosens Bioelectron. 2010;25:2414–9.CrossRefPubMedGoogle Scholar
  74. 74.
    Gong T, Kong KV, Goh D, Olivo M, Yong K-T. Sensitive surface enhanced Raman scattering multiplexed detection of matrix metalloproteinase 2 and 7 cancer markers. Biomed Opt Express. 2015;6:2076–87.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Head SR, Kiyomi Komori H, LaMere SA, Whisenant T, Van Nieuwerburgh F, Salomon DR. Library construction for next-generation sequencing: Overviews and challenges. Biotechniques. 2014;56:61.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Li Y, Wen ZN, Li LJ, Li ML, Gao N, Guo YZ. Research on the Raman spectral character and diagnostic value of squamous cell carcinoma of oral mucosa. J Raman Spectrosc. 2010;41:142–7.Google Scholar
  77. 77.
    Stahelin RV. Surface plasmon resonance: a useful technique for cell biologists to characterize biomolecular interactions. Mol Biol Cell. 2013;24:883–6.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    El-Sayed IH. Nanotechnology in head and neckcancer: the race is on. Curr Oncol Rep. 2010;12:121–8.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Poser E, Genovese I, Masciarelli S, Bellissimo T, Fazi F, Colotti G. Surface Plasmon resonance: a useful strategy for the identification of small molecule Argonaute 2 protein binders. Methods Mol Biol. 2017;1517:223–37.CrossRefPubMedGoogle Scholar
  80. 80.
    Piliarik M, Vaisocherová H, Homola J. Surface plasmon resonance biosensing. Methods Mol Biol. 2009;503:65–88.CrossRefPubMedGoogle Scholar
  81. 81.
    Drescher DG, Ramakrishnan NA, Drescher MJ. Surface Plasmon resonance (SPR) analysis of binding interactions of proteins in inner-ear sensory epithelia. Methods Mol Biol. 2009;493:323–43.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Dudak FC, Boyaci IH. Rapid and label-free bacteria detection by surface plasmon resonance (SPR) biosensors. Biotechnol J. 2009;4:1003–11.CrossRefPubMedGoogle Scholar
  83. 83.
    Im H, Shao H, Park YI, Peterson VM, Castro CM, Weissleder R, et al. Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor. Nat Biotechnol. 2014;32:490.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Yakob M, Fuentes L, Wang MB, Abemayor E, Wong DTW. Salivary biomarkers for detection of oral squamous cell carcinoma – current state and recent advances. Curr Oral Health Rep. 2014;1:133–41.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    El-Sayed IH, Huang X, El-Sayed MA. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett. 2005;5:829–34.CrossRefPubMedGoogle Scholar
  86. 86.
    Maiolo D, Paolini L, Di Noto G, Zendrini A, Berti D, Bergese P, et al. Colorimetric nanoplasmonic assay to determine purity and titrate extracellular vesicles. Anal Chem. 2015;87:4168–76.CrossRefPubMedGoogle Scholar
  87. 87.
    Xie X, Xu W, Liu X. Improving colorimetric assays through protein enzyme-assisted gold nanoparticle amplification. Acc Chem Res. 2012;45:1511–20.CrossRefPubMedGoogle Scholar
  88. 88.
    Cordeiro M, Ferreira Carlos F, Pedrosa P, Lopez A, Baptista PV. Gold Nanoparticles for Diagnostics: Advances towards Points of Care. Diagnostics (Basel).2016;6(4).pii: E43.Google Scholar
  89. 89.
    Chen P, Selegård R, Aili D, Liedberg B. Peptide functionalized gold nanoparticles for colorimetric detection of matrilysin (MMP-7) activity. Nanoscale. 2013;5:8973–6.CrossRefPubMedGoogle Scholar
  90. 90.
    Zhang Y, McKelvie ID, Cattrall RW, Kolev SD. Colorimetric detection based on localised surface plasmon resonance of gold nanoparticles: merits, inherent shortcomings and future prospects. Talanta. 2016;152:410–22.CrossRefPubMedGoogle Scholar
  91. 91.
    Latorre A, Posch C, Garcimartín Y, Ortiz-Urda S, Somoza Á. Single-point mutation detection in RNA extracts using gold nanoparticles modified with hydrophobic molecular beacon-like structures. Chem Commun (Camb). 2014;50:3018–20.CrossRefGoogle Scholar
  92. 92.
    Sun L, Zhang Z, Wang S, Zhang J, Li H, Ren L, et al. Effect of pH on the interaction of gold nanoparticles with DNA and application in the detection of human p53 gene mutation. Nanoscale Res Lett. 2008;4:216–20.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Nam JM, Thaxton CS, Mirkin CA. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science. 2003;301:1884–6.CrossRefPubMedGoogle Scholar
  94. 94.
    Laromaine A, Koh L, Murugesan M, Ulijn RV, Stevens MM. Protease-triggered dispersion of nanoparticle assemblies. J Am Chem Soc. 2007;129:4156–7.CrossRefPubMedGoogle Scholar
  95. 95.
    Maher RC, Maier SA, Cohen LF, Koh L, Laromaine A, Dick JAG, Stevens MM. Exploiting SERS hot spots for disease-specific enzyme detection. J Phys Chem C. 2010;114:7231–5.Google Scholar
  96. 96.
    Andrew St. John, Christopher P Price. Existing and emerging technologies for point-of-care testing. Clin Biochem Rev. 2014;35:155–67.Google Scholar
  97. 97.
    St John MA, Li Y, Zhou X, Denny P, Ho CM, Montemagno C, et al. Interleukin 6 and interleukin 8 as potential biomarkers for oral cavity and oropharyngeal squamous cell carcinoma. Arch Otolaryngol Head Neck Surg. 2004;130:929–35.CrossRefPubMedGoogle Scholar
  98. 98.
    de Jong EP, Xie H, Onsongo G, Stone MD, Chen XB, Kooren JA, et al. Quantitative proteomics reveals myosin and actin as promising saliva biomarkers for distinguishing pre-malignant and malignant oral lesions. PLoS One. 2010;5:e11148.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Li Y, St John MA, Zhou X, Kim Y, Sinha U, Jordan RC, et al. Salivary transcriptome diagnostics for oral cancer detection. Clin Cancer Res. 2004;10:8442–50.CrossRefPubMedGoogle Scholar
  100. 100.
    Elashoff D, Zhou H, Reiss J, Wang J, Henson B, Shen H, et al. Pre-validation of salivary biomarkers for oral Cancer detection. Cancer Epidemiol Biomark Prev. 2012;21:664–72.CrossRefGoogle Scholar
  101. 101.
    Yamazaki K, Nakajima T, Gemmell E, Polak B, Seymour GJ, Hara K. IL-4- and IL-6-producing cells in human periodontal disease tissue. J Oral Pathol Med. 1994;23:347–53.CrossRefPubMedGoogle Scholar
  102. 102.
    Fliss MS, Usadel H, Caballero OL, Wu L, Buta MR, Eleff SM, et al. Facile detection of mitochondrial DNA mutations in tumors and bodily fluids. Science. 2000;287:2017–9.CrossRefPubMedGoogle Scholar
  103. 103.
    Yoshizawa JM, Schafer CA, Schafer JJ, Farrell JJ, Paster BJ, Wong DT. Salivary biomarkers: toward future clinical and diagnostic utilities. Clin Microbiol Rev. 2013;26:781–91.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Stuani VT, Rubira CM, Sant'Ana AC, Santos PS. Salivary biomarkers as tools for oral squamous cell carcinoma diagnosis: a systematic review. Head Neck. 2017;39:797–811.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Oral Medicine and RadiologyMNR Dental College and HospitalSangareddyIndia
  2. 2.Center for Oral/Head and Neck Oncology ResearchSchool of Dentistry, University of California Los AngelesLos AngelesUSA
  3. 3.Jonsson Comprehensive Cancer CenterUniversity of California Los AngelesLos AngelesUSA
  4. 4.Head and Neck Surgery/OtolaryngologyDavid Geffen School of Medicine, University of California Los AngelesLos AngelesUSA
  5. 5.School of Engineering and Applied ScienceUniversity of California Los AngelesLos AngelesUSA

Personalised recommendations