Advertisement

OpenFOAM® pp 481-489 | Cite as

The Harmonic Balance Method for Temporally Periodic Free Surface Flows

  • Inno GatinEmail author
  • Gregor Cvijetić
  • Vuko Vukčević
  • Hrvoje Jasak
Chapter

Abstract

The Harmonic Balance Method for temporally periodic, non-linear, turbulent, free surface flows is presented in this work. The method transforms a periodic transient problem into a set of coupled steady-state problems, increasing the efficiency of calculation. The methodology is primarily targeted to efficient simulations related to wave–structure interaction in naval and offshore hydrodynamics. The method is validated on a 2D periodic free surface flow over a ramp test case and a 3D ship wave diffraction test case.

References

  1. 1.
    Chalmers University of Technology. Gothenburg 2010: A Workshop on CFD in Ship Hydrodynamics. http://www.insean.cnr.it/sites/default/files/gothenburg2010/index.html, 2010 [Online; accessed 20 August 2015].
  2. 2.
    G. Cvijetić, H. Jasak, and V. Vukčević. Finite Volume Implementation of Non-Linear Harmonic Balance Method for Periodic Flows. In SciTech, January 2016.Google Scholar
  3. 3.
    G. Cvijetić, H. Jasak, and V. Vukčević. Finite volume implementation of the harmonic balance method for periodic non-linear flows. In 54th AIAA Aerospace Sciences Meeting, page 0070, 2016.Google Scholar
  4. 4.
    K. C. Hall, K. Ekici, J. P. Thomas, and E. H. Dowell. Harmonic balance methods applied to computational fluid dynamics problems. Int. J. Comput. Fluid D., 27(2):52–67, 2013.MathSciNetCrossRefGoogle Scholar
  5. 5.
    K. C. Hall, J. P. Thomas, and W. S. Clark. Computation of unsteady nonlinear flows in cascades using a harmonic balance technique. AIAA Journal, 40(5):879–886, 2002.CrossRefGoogle Scholar
  6. 6.
    H. Huang and K. Ekici. A discrete adjoint harmonic balance method for turbomachinery shape optimization. Aerospace Science and Technology, 39:481–490, 2014.CrossRefGoogle Scholar
  7. 7.
    L. Larsson, F. Stern, M. Visonneau, N. Hirata, T. Hino, and J. Kim, editors. Tokyo 2015: A Workshop on CFD in Ship Hydrodynamics, volume 2, Tokyo, Japan, 2015. NMRI (National Maritime Research Institute).Google Scholar
  8. 8.
    L. Larsson, F. Stern, M. Visonneau, N. Hirata, T. Hino, and J. Kim, editors. Tokyo 2015: A Workshop on CFD in Ship Hydrodynamics, volume 3, Tokyo, Japan, 2015. NMRI (National Maritime Research Institute).Google Scholar
  9. 9.
    V. Vukčević, H. Jasak, and S. Malenica. Decomposition model for naval hydrodynamic applications, Part I: Computational method. Ocean Eng., 121:37–46, 2016.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Inno Gatin
    • 1
    Email author
  • Gregor Cvijetić
    • 1
  • Vuko Vukčević
    • 1
  • Hrvoje Jasak
    • 1
  1. 1.University of ZagrebZagrebCroatia

Personalised recommendations